找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The

[復(fù)制鏈接]
查看: 43923|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:57:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
副標(biāo)題Hardware Architectur
編輯Sudeep Pasricha,Muhammad Shafique
視頻videohttp://file.papertrans.cn/308/307903/307903.mp4
概述Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing.Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and
圖書封面Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The
描述.This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits..
出版日期Book 2024
關(guān)鍵詞Machine learning embedded systems; Machine learning IoT; Machine learning edge computing; Smart Cyber-P
版次1
doihttps://doi.org/10.1007/978-3-031-19568-6
isbn_softcover978-3-031-19570-9
isbn_ebook978-3-031-19568-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影響因子(影響力)




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影響因子(影響力)學(xué)科排名




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing網(wǎng)絡(luò)公開度




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引頻次




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引頻次學(xué)科排名




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用學(xué)科排名




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing讀者反饋




書目名稱Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:06 | 只看該作者
https://doi.org/10.1007/978-3-662-68073-5 neural networks can be accelerated in an energy-efficient manner. In particular, we focus on design considerations and trade-offs for mapping CNNs, Transformers, and GNNs on AI accelerators that attempt to maximize compute efficiency and minimize energy consumption by reducing the number of access to memory through efficient data reuse.
板凳
發(fā)表于 2025-3-22 03:22:25 | 只看該作者
https://doi.org/10.1007/978-3-8349-9996-2are. Thereafter, we discuss different interconnect techniques for IMC architectures proposed in the literature. Finally, different performance evaluation techniques for IMC architectures are described. We conclude the chapter with a summary and future avenues for IMC architectures for ML acceleration.
地板
發(fā)表于 2025-3-22 06:02:10 | 只看該作者
Low- and Mixed-Precision Inference Acceleratorsd, all aiming at enabling neural network inference at the edge. In this chapter, design choices and their implications on the flexibility and energy efficiency of several accelerators supporting extremely quantized networks are reviewed.
5#
發(fā)表于 2025-3-22 12:15:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:27:08 | 只看該作者
In-Memory Computing for AI Accelerators: Challenges and Solutionsare. Thereafter, we discuss different interconnect techniques for IMC architectures proposed in the literature. Finally, different performance evaluation techniques for IMC architectures are described. We conclude the chapter with a summary and future avenues for IMC architectures for ML acceleration.
7#
發(fā)表于 2025-3-22 19:18:15 | 只看該作者
8#
發(fā)表于 2025-3-23 00:56:32 | 只看該作者
9#
發(fā)表于 2025-3-23 02:50:56 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:08 | 只看該作者
Embedded Machine Learning for Cyber-Physical, IoT, and Edge ComputingHardware Architectur
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙游县| 沙坪坝区| 阳朔县| 城市| 潜江市| 四川省| 富民县| 榕江县| 保亭| 璧山县| 彰化市| 乐至县| 句容市| 玉树县| 乐山市| 纳雍县| 诸暨市| 马龙县| 宁强县| 宝山区| 台南县| 大丰市| 昆明市| 平塘县| 玛沁县| 聂荣县| 航空| 行唐县| 井冈山市| 西吉县| 昆山市| 夏津县| 仁寿县| 新沂市| 大方县| 双鸭山市| 延长县| 宜丰县| 湘乡市| 乐亭县| 长海县|