找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptically Contoured Models in Statistics and Portfolio Theory; Arjun K. Gupta,Tamas Varga,Taras Bodnar Book 2013Latest edition Springer

[復(fù)制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 21:46:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:09 | 只看該作者
33#
發(fā)表于 2025-3-27 05:49:33 | 只看該作者
Hypothesis TestingBefore studying concrete hypotheses, we derive some general theorems. These results are based on Anderson, Fang, and Hsu (.) and Hsu (.).
34#
發(fā)表于 2025-3-27 12:24:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:49 | 只看該作者
https://doi.org/10.1007/978-3-662-28439-1mal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
36#
發(fā)表于 2025-3-27 18:58:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:58:16 | 只看該作者
Mixtures of Normal Distributionsmal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
38#
發(fā)表于 2025-3-28 03:11:49 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:16 | 只看該作者
Preliminariesese distributions provedto be useful in statistical inference. For example, the Wishart distribution is essential when studying the sample covariance matrix in the multivariate normal theory. Random matricescan also be used to describe repeated measurements on multivariate variables. In this case,th
40#
發(fā)表于 2025-3-28 12:16:12 | 只看該作者
Basic Propertiesand Sutradhar and Ali(1989). We use the definition given in Gupta and Varga (1994b). Moreover, we present somebasic properties of matrix variate elliptically contoured distributions, such as the stochasticrepresentation, the conditional and marginal distributions. Finally, several families of matrix
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奎屯市| 神木县| 怀集县| 长沙市| 城口县| 信阳市| 天柱县| 诸城市| 永靖县| 大冶市| 金平| 彭泽县| 辉县市| 闵行区| 沐川县| 浠水县| 汝城县| 玉林市| 丹阳市| 丹棱县| 雷山县| 噶尔县| 浙江省| 台南市| 临湘市| 鹤壁市| 双辽市| 恩施市| 柘城县| 华亭县| 新巴尔虎右旗| 翼城县| 汉沽区| 南郑县| 南澳县| 扎囊县| 巨野县| 枞阳县| 巴彦淖尔市| 长顺县| 绥滨县|