找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptically Contoured Models in Statistics and Portfolio Theory; Arjun K. Gupta,Tamas Varga,Taras Bodnar Book 2013Latest edition Springer

[復(fù)制鏈接]
樓主: 我贊成
31#
發(fā)表于 2025-3-26 21:46:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:09 | 只看該作者
33#
發(fā)表于 2025-3-27 05:49:33 | 只看該作者
Hypothesis TestingBefore studying concrete hypotheses, we derive some general theorems. These results are based on Anderson, Fang, and Hsu (.) and Hsu (.).
34#
發(fā)表于 2025-3-27 12:24:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:49 | 只看該作者
https://doi.org/10.1007/978-3-662-28439-1mal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
36#
發(fā)表于 2025-3-27 18:58:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:58:16 | 只看該作者
Mixtures of Normal Distributionsmal distributionsis defined in this chapter. Furthermore, we present another way to obtain the p.d.f. of a matrix variate elliptically contoured distribution from the density functions of matrix variate normal distributions. For this purpose, Laplace transform is used.
38#
發(fā)表于 2025-3-28 03:11:49 | 只看該作者
39#
發(fā)表于 2025-3-28 09:36:16 | 只看該作者
Preliminariesese distributions provedto be useful in statistical inference. For example, the Wishart distribution is essential when studying the sample covariance matrix in the multivariate normal theory. Random matricescan also be used to describe repeated measurements on multivariate variables. In this case,th
40#
發(fā)表于 2025-3-28 12:16:12 | 只看該作者
Basic Propertiesand Sutradhar and Ali(1989). We use the definition given in Gupta and Varga (1994b). Moreover, we present somebasic properties of matrix variate elliptically contoured distributions, such as the stochasticrepresentation, the conditional and marginal distributions. Finally, several families of matrix
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 宝清县| 武鸣县| 南汇区| 宿州市| 枣强县| 广宁县| 东台市| 简阳市| 防城港市| 稻城县| 鲁甸县| 沅江市| 内江市| 天门市| 香港| 古蔺县| 秀山| 疏勒县| 屏边| 吴旗县| 金乡县| 龙岩市| 桦川县| 苍南县| 旅游| 双柏县| 日土县| 兴业县| 罗田县| 盱眙县| 乡城县| 陈巴尔虎旗| 庆元县| 威宁| 寿宁县| 玛多县| 马边| 达州市| 林甸县| 湖州市|