找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic and Parabolic Equations; Hannover, September Joachim Escher,Elmar Schrohe,Christoph Walker Conference proceedings 2015 Springer I

[復(fù)制鏈接]
樓主: 注射
21#
發(fā)表于 2025-3-25 04:39:21 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:14 | 只看該作者
https://doi.org/10.1057/9780230236622rely on a generalized maximum principle which allows gradient estimates in the Riemannian setting to be directly applied to the Bakry–émery setting. Lower bounds for all eigenvalues are demonstrated using heat kernel estimates and a suitable Sobolev inequality.
23#
發(fā)表于 2025-3-25 13:10:16 | 只看該作者
24#
發(fā)表于 2025-3-25 16:08:11 | 只看該作者
25#
發(fā)表于 2025-3-25 21:17:16 | 只看該作者
Uniformly Regular and Singular Riemannian Manifolds,e of fundamental importance for a Sobolev space solution theory for parabolic evolution equations on noncompact Riemannian manifolds with and without boundary. Besides pointing out this connection in some detail we present large families of uniformly regular and singular manifolds which are admissible for this analysis.
26#
發(fā)表于 2025-3-26 03:53:19 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:33 | 只看該作者
Aspects of the Mathematical Analysis of Nonlinear Stratified Water Waves,which is of great physical and geophysical importance. In this chapter, we present an overview of some recently derived rigorous analytical results for nonlinear steady periodic stratified water waves.
28#
發(fā)表于 2025-3-26 10:39:10 | 只看該作者
On Bifurcation for Semilinear Elliptic Dirichlet Problems on Shrinking Domains,rom a given (trivial) branch of solutions, where the radius of the ball serves as bifurcation parameter. Our methods are based on well-known results from variational bifurcation theory, which we outline in a separate section for the readers’ convenience.
29#
發(fā)表于 2025-3-26 13:25:28 | 只看該作者
978-3-319-38150-3Springer International Publishing Switzerland 2015
30#
發(fā)表于 2025-3-26 19:17:44 | 只看該作者
Elliptic and Parabolic Equations978-3-319-12547-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤城市| 南康市| 抚顺县| 阳城县| 额济纳旗| 鱼台县| 金溪县| 醴陵市| 永州市| 宜丰县| 锡林浩特市| 出国| 五莲县| 宁河县| 金堂县| 永城市| 恭城| 高安市| 荔浦县| 武清区| 镶黄旗| 桂林市| 丹寨县| 南昌县| 广饶县| 滕州市| 九江县| 安徽省| 吉木萨尔县| 苏尼特右旗| 蓝田县| 西丰县| 十堰市| 北海市| 长顺县| 天峻县| 顺义区| 大荔县| 黎平县| 屏山县| 眉山市|