找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Regularity Theory; A First Course Lisa Beck Book 2016 Springer International Publishing Switzerland 2016 35J47,35B65,49N60.quasili

[復制鏈接]
查看: 31111|回復: 35
樓主
發(fā)表于 2025-3-21 18:32:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Regularity Theory
副標題A First Course
編輯Lisa Beck
視頻videohttp://file.papertrans.cn/308/307806/307806.mp4
概述Gives a systematic, self-contained account of the topic.Presents recent results for the first time.Intended for researchers and graduate students with background in real and functional analysis
叢書名稱Lecture Notes of the Unione Matematica Italiana
圖書封面Titlebook: Elliptic Regularity Theory; A First Course Lisa Beck Book 2016 Springer International Publishing Switzerland 2016 35J47,35B65,49N60.quasili
描述.These lecture notes provide a self-contained introduction to regularity theory for elliptic equations and systems in divergence form. After a short review of some classical results on everywhere regularity for scalar-valued weak solutions, the presentation focuses on vector-valued weak solutions to a system of several coupled equations. In the vectorial case, weak solutions may have discontinuities and so are expected, in general, to be regular only outside of a set of measure zero. Several methods are presented concerning the proof of such partial regularity results, and optimal regularity is discussed. Finally, a short overview is given on the current state of the art concerning the size of the singular set on which discontinuities may occur...The notes are intended for graduate and postgraduate students with a solid background in functional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics..
出版日期Book 2016
關(guān)鍵詞35J47,35B65,49N60; quasilinear elliptic systems; weak solutions; (partial) regularity; dimension reducti
版次1
doihttps://doi.org/10.1007/978-3-319-27485-0
isbn_softcover978-3-319-27484-3
isbn_ebook978-3-319-27485-0Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Elliptic Regularity Theory影響因子(影響力)




書目名稱Elliptic Regularity Theory影響因子(影響力)學科排名




書目名稱Elliptic Regularity Theory網(wǎng)絡(luò)公開度




書目名稱Elliptic Regularity Theory網(wǎng)絡(luò)公開度學科排名




書目名稱Elliptic Regularity Theory被引頻次




書目名稱Elliptic Regularity Theory被引頻次學科排名




書目名稱Elliptic Regularity Theory年度引用




書目名稱Elliptic Regularity Theory年度引用學科排名




書目名稱Elliptic Regularity Theory讀者反饋




書目名稱Elliptic Regularity Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:22:28 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:38 | 只看該作者
1862-9113 unctional analysis and some familiarity with partial differential equations; they will also be of interest to researchers working on related topics..978-3-319-27484-3978-3-319-27485-0Series ISSN 1862-9113 Series E-ISSN 1862-9121
5#
發(fā)表于 2025-3-22 12:48:35 | 只看該作者
6#
發(fā)表于 2025-3-22 15:02:44 | 只看該作者
7#
發(fā)表于 2025-3-22 20:11:34 | 只看該作者
Partial Regularity Results for Quasilinear Systems,for a non-trivial bound on its Hausdorff dimensions, but this requires further work. In different settings, from simple to quite general ones, we explain (fractional) higher differentiability estimates for the gradient of weak solutions. These provide, in turn, the desired bounds for the Hausdorff dimension of the singular set.
8#
發(fā)表于 2025-3-23 01:07:54 | 只看該作者
9#
發(fā)表于 2025-3-23 03:16:33 | 只看該作者
10#
發(fā)表于 2025-3-23 06:15:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永济市| 平利县| 新邵县| 邳州市| 平泉县| 马龙县| 鹤庆县| 英德市| 治县。| 梁河县| 来安县| 南和县| 峨山| 霸州市| 涞水县| 苗栗县| 阆中市| 闽侯县| 安陆市| 武乡县| 崇文区| 册亨县| 安远县| 咸宁市| 阜平县| 柏乡县| 乡城县| 林甸县| 白玉县| 澜沧| 工布江达县| 长治县| 元阳县| 绵竹市| 阳春市| 宜宾县| 栾川县| 泾源县| 米泉市| 巨野县| 海淀区|