找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[復(fù)制鏈接]
樓主: 法令
21#
發(fā)表于 2025-3-25 04:19:44 | 只看該作者
Elliptic Quantum Group ,,tion. In addition, following the quasi-Hopf formulation ., we introduce the ..-operator and show that the difference between the +? and the ? half currents gives the elliptic currents of .. Furthermore a connection to Felder’s formulation is shown by introducing the dynamical .-operators.
22#
發(fā)表于 2025-3-25 08:36:56 | 只看該作者
The ,-Hopf-Algebroid Structure of ,,t certain shifts by . and . in . when they move from one tensor component to the other. These shifts produce the same effects as the dynamical shift in the DYBE and the dynamical .-relation. Hence the .-Hopf-algebroid structure provides a convenient co-algebra structure compatible with the dynamical shift. See Chaps. .–..
23#
發(fā)表于 2025-3-25 14:26:55 | 只看該作者
Representations of ,,al., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
24#
發(fā)表于 2025-3-25 16:08:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:00:38 | 只看該作者
Related Geometry,n be identified with .. Based on this identification, we also show a correspondence between the Gelfand-Tsetlin basis (resp. the standard basis) of . in Chap. . and the fixed point classes (resp. the stable classes) in E.(.). This correspondence allows us to construct an action of . on E.(.).
26#
發(fā)表于 2025-3-26 02:23:31 | 只看該作者
27#
發(fā)表于 2025-3-26 04:18:37 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:02 | 只看該作者
Tensor Product Representation,s matrix from the standard basis to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight functions. The resultant action is expressed in a perfectly combinatorial way in terms of the partitions of [1, .]. In Chap. . we discuss a geometric interpretation of it.
29#
發(fā)表于 2025-3-26 15:18:06 | 只看該作者
30#
發(fā)表于 2025-3-26 18:07:32 | 只看該作者
William Weaver Jr.,James M. Gereal., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 刚察县| 余姚市| 娱乐| 甘泉县| 南涧| 临江市| 习水县| 乡城县| 会同县| 托克逊县| 宁阳县| 凌海市| 突泉县| 南丰县| 东港市| 南溪县| 勃利县| 舞阳县| 平顺县| 青神县| 桦川县| 祥云县| 阿城市| 天等县| 临西县| 夹江县| 定襄县| 鱼台县| 文水县| 株洲市| 吴旗县| 清徐县| 惠州市| 青铜峡市| 大埔县| 巧家县| 宜州市| 康乐县| 杭锦旗| 射阳县|