找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
21#
發(fā)表于 2025-3-25 04:47:26 | 只看該作者
,über die Weierstra?sche ? — Funktion,How many kinds of domains are there in a plane? Here by the word ‘domain’ we mean a connected open set (or, equivalently, an arcwise-connected open set).
22#
發(fā)表于 2025-3-25 10:39:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:52 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:42 | 只看該作者
,Analysis: Ma? und Integration,In the previous chapter we proved that rational functions, rational functions of an exponential function and elliptic functions have addition theorems (algebraic addition formulae). Are there other functions which have algebraic addition formulae? The next Weierstrass–Phragmén theorem1 answers this question.
26#
發(fā)表于 2025-3-26 03:33:50 | 只看該作者
Introduction,In this chapter, apart from establishing rigorous definitions and logic, we will survey the various themes in the main part of the book to get an overview of the theory.We also pick up several topics which we shall not deal with later, in order to show the breadth and depth of the theory of elliptic functions.
27#
發(fā)表于 2025-3-26 04:45:40 | 只看該作者
The Arc Length of CurvesAs a matter of fact, this is nothing more than a paraphrase of the definition of 𝜋: ‘The number 𝜋 is the ratio of a circle’s circumference to its diameter’. However, if you pursue logical rigour, there are many gaps to be filled.
28#
發(fā)表于 2025-3-26 09:13:24 | 只看該作者
Classification of Elliptic IntegralsIt is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
29#
發(fā)表于 2025-3-26 16:38:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:45:33 | 只看該作者
Jacobi’s Elliptic Functions on In this chapter we introduce elliptic functions as inverse functions of elliptic integrals..We use several convergence theorems in real analysis, which we cite in Appendix A.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜平县| 固原市| 丽江市| 襄樊市| 红安县| 万全县| 德庆县| 景东| 青神县| 长海县| 定边县| 安新县| 吉安市| 深州市| 万年县| 琼结县| 上林县| 临江市| 安阳县| 石家庄市| 昌吉市| 岳阳县| 囊谦县| 潞城市| 古丈县| 甘洛县| 江城| 新巴尔虎左旗| 达州市| 贺兰县| 铜梁县| 施秉县| 仲巴县| 囊谦县| 德钦县| 临夏县| 屏东市| 德令哈市| 班戈县| 定边县| 壤塘县|