找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復(fù)制鏈接]
樓主: Malinger
31#
發(fā)表于 2025-3-26 21:52:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:39 | 只看該作者
https://doi.org/10.1007/978-3-319-45032-211R23, 11F11, 11F67; Iwasawa Theory; Elliptic Curves; Modular Forms; Number Theory; John Coates
33#
發(fā)表于 2025-3-27 06:18:58 | 只看該作者
2194-1009 his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference .Elliptic Curves, Modular Forms
34#
發(fā)表于 2025-3-27 13:00:51 | 只看該作者
Compactifications of S-arithmetic Quotients for the Projective General Linear Group, the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
35#
發(fā)表于 2025-3-27 17:16:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:57 | 只看該作者
Conference proceedings 201670.th .?birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. . .This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.?.
37#
發(fā)表于 2025-3-27 22:18:33 | 只看該作者
38#
發(fā)表于 2025-3-28 03:14:28 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:50 | 只看該作者
40#
發(fā)表于 2025-3-28 13:07:18 | 只看該作者
https://doi.org/10.1007/978-3-662-65528-3 the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海盐县| 通江县| 濮阳县| 昭苏县| 江孜县| 铁岭市| 万山特区| 安吉县| 望都县| 临潭县| 清远市| 张家界市| 毕节市| 韶山市| 萍乡市| 岢岚县| 新兴县| 乐清市| 淳化县| 罗山县| 禹城市| 七台河市| 大姚县| 美姑县| 金湖县| 剑川县| 克什克腾旗| 安远县| 梧州市| 巴塘县| 黄龙县| 托克逊县| 全州县| 麻阳| 乐安县| 林芝县| 龙井市| 普宁市| 日照市| 鹤庆县| 杂多县|