找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves and Arithmetic Invariants; Haruzo Hida Book 2013 Springer Science+Business Media New York 2013 Hecke algebra.Shimura varie

[復(fù)制鏈接]
查看: 19676|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:38:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants
編輯Haruzo Hida
視頻videohttp://file.papertrans.cn/308/307777/307777.mp4
概述Contains top-notch research that will interest both experts and advanced graduate students.Written by an expert renowned for his discovery that modular forms fall into families, otherwise known as "Hi
叢書(shū)名稱(chēng)Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Elliptic Curves and Arithmetic Invariants;  Haruzo Hida Book 2013 Springer Science+Business Media New York 2013 Hecke algebra.Shimura varie
描述This book contains a detailed account of the result of the author‘s recent Annals paper and JAMS paper on arithmetic invariant, including .μ.-invariant, .L.-invariant, and similar topics.?? This book can be regarded as an introductory text to the author‘s previous book .p-Adic Automorphic Forms on Shimura Varieties..? Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.? Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.? Key topics include non-triviality of arithmetic invariants and special values of .L.-functions; elliptic curves over complex and .p.-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
出版日期Book 2013
關(guān)鍵詞Hecke algebra; Shimura variety; arithmetic invariants; elliptic curves; modular forms; scheme theory
版次1
doihttps://doi.org/10.1007/978-1-4614-6657-4
isbn_softcover978-1-4899-9092-1
isbn_ebook978-1-4614-6657-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants影響因子(影響力)




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants被引頻次




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants被引頻次學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants年度引用




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants年度引用學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants讀者反饋




書(shū)目名稱(chēng)Elliptic Curves and Arithmetic Invariants讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:15:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:21:56 | 只看該作者
6#
發(fā)表于 2025-3-22 13:03:57 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:30 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:31 | 只看該作者
Elliptic Curves and Modular Forms,We now describe basics of elliptic curves and modular curves in three steps:
9#
發(fā)表于 2025-3-23 04:01:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:35:58 | 只看該作者
Nonvanishing Modulo , of Hecke ,-Values,We return to the setting of Sect. 6.4; thus, . with discriminant ? . is an imaginary quadratic field in which the fixed prime (.) splits into a product of two primes . with ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漠河县| 阿城市| 玉门市| 长兴县| 济阳县| 张北县| 田阳县| 栖霞市| 松江区| 海兴县| 广元市| 马山县| 屏南县| 怀来县| 昆山市| 璧山县| 德清县| 阜康市| 兴文县| 沾化县| 大同县| 娱乐| 禹城市| 古交市| 台北县| 中牟县| 星座| 临清市| 鄂托克旗| 临安市| 乐陵市| 新邵县| 曲松县| 德兴市| 麟游县| 铁岭市| 华蓥市| 金堂县| 孟连| 桦南县| 宁远县|