找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves; Dale Husem?ller Textbook 2004Latest edition Springer Science+Business Media New York 2004 Dimension.Grad.algebraic curve

[復(fù)制鏈接]
查看: 55298|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:17:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Elliptic Curves
編輯Dale Husem?ller
視頻videohttp://file.papertrans.cn/308/307775/307775.mp4
叢書(shū)名稱(chēng)Graduate Texts in Mathematics
圖書(shū)封面Titlebook: Elliptic Curves;  Dale Husem?ller Textbook 2004Latest edition Springer Science+Business Media New York 2004 Dimension.Grad.algebraic curve
描述There are three new appendices, one by Stefan Theisen on the role of Calabi– Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves in computing theory and coding theory. In the third appendix we discuss the role of elliptic curves in homotopy theory. In these three introductions the reader can get a clue to the far-reaching implications of the theory of elliptic curves in mathematical sciences. During the ?nal production of this edition, the ICM 2002 manuscript of Mike Hopkins became available. This report outlines the role of elliptic curves in ho- topy theory. Elliptic curves appear in the form of the Weierstasse equation and its related changes of variable. The equations and the changes of variable are coded in an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to a cohomology theory called topological modular forms. Hopkins and his coworkers have used this theory in several directions, one being the explanation of elements in stable homotopy up to degree 60. In the third appendix we explain how what we described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with Hopkins’ paper.
出版日期Textbook 2004Latest edition
關(guān)鍵詞Dimension; Grad; algebraic curve
版次2
doihttps://doi.org/10.1007/b97292
isbn_softcover978-1-4419-3025-5
isbn_ebook978-0-387-21577-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書(shū)目名稱(chēng)Elliptic Curves影響因子(影響力)




書(shū)目名稱(chēng)Elliptic Curves影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Elliptic Curves網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves被引頻次




書(shū)目名稱(chēng)Elliptic Curves被引頻次學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves年度引用




書(shū)目名稱(chēng)Elliptic Curves年度引用學(xué)科排名




書(shū)目名稱(chēng)Elliptic Curves讀者反饋




書(shū)目名稱(chēng)Elliptic Curves讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:29 | 只看該作者
Elliptic Curves978-0-387-21577-8Series ISSN 0072-5285 Series E-ISSN 2197-5612
板凳
發(fā)表于 2025-3-22 01:15:32 | 只看該作者
https://doi.org/10.1007/b97292Dimension; Grad; algebraic curve
地板
發(fā)表于 2025-3-22 05:31:41 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/e/image/307775.jpg
5#
發(fā)表于 2025-3-22 10:01:13 | 只看該作者
6#
發(fā)表于 2025-3-22 14:03:16 | 只看該作者
7#
發(fā)表于 2025-3-22 21:00:13 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:25 | 只看該作者
Galois Cohomology and Isomorphism Classification of Elliptic Curves over Arbitrary Fields,
9#
發(fā)表于 2025-3-23 03:39:01 | 只看該作者
10#
發(fā)表于 2025-3-23 06:29:18 | 只看該作者
-Function of an Elliptic Curve and Its Analytic Continuation,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 00:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛宁县| 襄汾县| 佛学| 尚义县| 河池市| 庆元县| 南靖县| 苏尼特左旗| 安福县| 灌南县| 临朐县| 恩施市| 中西区| 方城县| 南郑县| 隆化县| 汉中市| 旅游| 洪泽县| 苏尼特左旗| 南昌县| 榆中县| 宁夏| 苏州市| 牟定县| 正蓝旗| 巴塘县| 河北区| 常宁市| 高淳县| 苗栗市| 伊吾县| 拜泉县| 漯河市| 宜良县| 集贤县| 如东县| 伊春市| 正蓝旗| 宁德市| 丰都县|