找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curve Public Key Cryptosystems; Alfred Menezes Book 1993 Springer Science+Business Media New York 1993 Potential.algorithms.crypt

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 05:46:03 | 只看該作者
Implementation of elliptic Curve cryptosystems,te fields. For a secure system, it is evident from the results of Chapter 5 that the curve and underlying field should be judiciously chosen. However we should point out that for a given underlying field there are a large number of suitable elliptic curve to choose from. If the logarithm problem in
22#
發(fā)表于 2025-3-25 08:12:22 | 只看該作者
Counting Points on Elliptic Curves Over F2m,field . The algorithm has a running time of 0(log. . bit operations, and is rather cumbersome in practice. Buchmann and Muller [20] combined Schoof’s algorithm with Shanks’ baby-step giant-step algorithm, and were able to compute orders of curves over F., where . is a 27-decimal digit prime. The alg
23#
發(fā)表于 2025-3-25 12:34:18 | 只看該作者
Book 1993hms for factoring integers and primalityproving, and in the construction of public key cryptosystems...Elliptic Curve Public Key Cryptosystems. provides an up-to-dateand self-contained treatment of elliptic curve-based public keycryptology. Elliptic curve cryptosystems potentially provideequivalent
24#
發(fā)表于 2025-3-25 16:57:03 | 只看該作者
0893-3405 nt algorithms for factoring integers and primalityproving, and in the construction of public key cryptosystems...Elliptic Curve Public Key Cryptosystems. provides an up-to-dateand self-contained treatment of elliptic curve-based public keycryptology. Elliptic curve cryptosystems potentially providee
25#
發(fā)表于 2025-3-25 23:59:43 | 只看該作者
Balázs Király,Margit Pap,ákos Pilgermajer [68]. Unless otherwise stated, proofs of these results can be found in the book by J. Silverman [140]. For an elementary introduction to elliptic curves, we recommend the notes by Charlap and Robbins [26], and also to the recent book by Silverman and Tate [141].
26#
發(fā)表于 2025-3-26 01:00:14 | 只看該作者
https://doi.org/10.1007/b137592sed. In Section 4.1 we briefly survey the algorithms known for this problem. In Section 4.2, we demonstrate efficient reductions of the logarithm problems in singular elliptic curves and some other groups to the logarithm problem in a finite field.
27#
發(fā)表于 2025-3-26 06:03:03 | 只看該作者
28#
發(fā)表于 2025-3-26 10:33:01 | 只看該作者
Introduction to Elliptic Curves, [68]. Unless otherwise stated, proofs of these results can be found in the book by J. Silverman [140]. For an elementary introduction to elliptic curves, we recommend the notes by Charlap and Robbins [26], and also to the recent book by Silverman and Tate [141].
29#
發(fā)表于 2025-3-26 16:16:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 东乌珠穆沁旗| 德保县| 霍林郭勒市| 阿克苏市| 卢湾区| 邛崃市| 聊城市| 桦甸市| 个旧市| 浦北县| 永兴县| 沧源| 周口市| 航空| 长沙市| 西和县| 广饶县| 达孜县| 大兴区| 浦东新区| 宜良县| 本溪市| 巫山县| 城口县| 辽源市| 大洼县| 临武县| 大英县| 和硕县| 同德县| 锡林浩特市| 綦江县| 柘城县| 黑龙江省| 湖北省| 河池市| 华蓥市| 湘乡市| 蚌埠市| 宁城县|