找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Value Problems in the Spaces of Distributions; Yakov Roitberg Book 1996 Springer Science+Business Media Dordrecht 1996 B

[復制鏈接]
樓主: otitis-externa
21#
發(fā)表于 2025-3-25 06:16:14 | 只看該作者
978-94-010-6276-3Springer Science+Business Media Dordrecht 1996
22#
發(fā)表于 2025-3-25 10:10:52 | 只看該作者
Overview: 978-94-010-6276-3978-94-011-5410-9
23#
發(fā)表于 2025-3-25 11:46:17 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:38 | 只看該作者
25#
發(fā)表于 2025-3-25 23:01:03 | 只看該作者
26#
發(fā)表于 2025-3-26 02:05:11 | 只看該作者
Elliptic Problems with Normal Boundary Conditions,ction 1.10). Below, we consider only special local coordinates defined in a sufficiently small neighborhood .(..) of every point .. ∈ ?.. If (.′,…, .′.) is any other system of special coordinates in G ∩ ., then, in . ∩ . ∩) G, we have . and the determinant of the Jacobi matrix det .′/. of this transformation is not equal to zero.
27#
發(fā)表于 2025-3-26 04:50:22 | 只看該作者
Construction of a Regular Heptadecagon,o [Agm], [AgN], and [Som]) as a class of elliptic boundary-value problems with a parameter. In the papers mentioned above, elliptic boundary-value problems with a parameter were studied in classes of sufficiently smooth functions. In [Roi18]-[Roi20], [RoS1], and [RoS2], these problems were investigated in spaces of generalized functions.
28#
發(fā)表于 2025-3-26 12:20:14 | 只看該作者
Estimation in Parametric Models, function in G such that .(.) = 1 for dist (.,?.)≤ε and .(.) = 0 for dist(.,?.)≥ 2ε (ε > 0 is a sufficiently small number), then the rth-order expression . satisfies condition (6.1.4) but is not elliptic at any point of ?..
29#
發(fā)表于 2025-3-26 16:06:42 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:33 | 只看該作者
https://doi.org/10.1007/978-90-481-3747-3 Thus, even in the case where the defect of problem (7.1.3) is equal to zero ., the problem with power singularities on the right-hand sides admits numerous solutions. To choose a unique solution, it is necessary to impose additional restrictions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 14:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁城县| 庆阳市| 光泽县| 榆树市| 建德市| 滕州市| 当涂县| 陈巴尔虎旗| 赞皇县| 平谷区| 尖扎县| 华容县| 扶绥县| 柘荣县| 秦皇岛市| 桃园市| 小金县| 苏州市| 巴林左旗| 恩施市| 嘉义县| 庐江县| 晴隆县| 慈溪市| 南岸区| 宁夏| 邯郸县| 水城县| 呼伦贝尔市| 金坛市| 永安市| 罗甸县| 北川| 泉州市| 浦城县| 遂昌县| 邵东县| 柳江县| 阳春市| 镇康县| 渭源县|