找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[復(fù)制鏈接]
樓主: 反抗日本
21#
發(fā)表于 2025-3-25 07:09:36 | 只看該作者
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
22#
發(fā)表于 2025-3-25 11:13:09 | 只看該作者
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
23#
發(fā)表于 2025-3-25 14:59:29 | 只看該作者
The Gerasimov-Drell-Hearn sum rule at MAMILet G be a finite group. We denote by .[.] the set of all formal linear combinations of elements of G with integer coefficients. In .[.] we define the operations of addition and multiplication in a quite natural way:..
24#
發(fā)表于 2025-3-25 17:21:37 | 只看該作者
Pedagogical Love and Good TeacherhoodBy the character of a finite-dimensional representation T of a group G, we mean the function
25#
發(fā)表于 2025-3-25 22:51:23 | 只看該作者
26#
發(fā)表于 2025-3-26 03:23:12 | 只看該作者
27#
發(fā)表于 2025-3-26 06:34:45 | 只看該作者
S. Mazevet,J. Berakdar,J. Lower,E. WeigoldConsider a geometric body which casts a shadow of constant area when illuminated by parallel rays from an arbitrary direction. Can one infer that the body is a sphere?
28#
發(fā)表于 2025-3-26 12:16:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:38:14 | 只看該作者
30#
發(fā)表于 2025-3-26 17:31:38 | 只看該作者
Groups and Homogeneous SpacesA . is a nonvoid set . of mappings of a certain set . onto itself with the following properties:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泗阳县| 囊谦县| 墨竹工卡县| 望谟县| 修武县| 麻城市| 德化县| 威宁| 米林县| 三都| 东丰县| 蒙城县| 长乐市| 尚义县| 云林县| 重庆市| 濮阳市| 阜城县| 峨边| 彰武县| 邢台县| 攀枝花市| 油尖旺区| 泰安市| 巴林右旗| 红原县| 白城市| 东莞市| 淳化县| 霍邱县| 都昌县| 六枝特区| 崇仁县| 日土县| 北安市| 辉县市| 宜良县| 安图县| 岑溪市| 会东县| 莎车县|