找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of the Representation Theory of the Jacobi Group; Rolf Berndt,Ralf Schmidt Book 1998 Springer Basel AG 1998 Number theory.algebra

[復(fù)制鏈接]
樓主: cucumber
21#
發(fā)表于 2025-3-25 06:19:30 | 只看該作者
https://doi.org/10.1007/978-3-662-48803-4ers, we are now ready to consider representations of G. (.), where.is the adele ring of some number field. The first section of this chapter collects some basic results about the adelized Jacobi group.
22#
發(fā)表于 2025-3-25 10:11:51 | 只看該作者
The Jacobi Group,ns which may be more or less appropriate for the different parts of the theory. So we will discuss here several realizations and change from one to the other from time to time. To keep track it is helpful to think of the Jacobi group as a certain subgroup of a bigger symplectic group.
23#
發(fā)表于 2025-3-25 11:49:32 | 只看該作者
Local Representations: The Real Case,which is a genuine representation of the metaplectic cover.and may be identified with a projective representation of.If we tensorize.with another genuine representation.of the metaplectic cover Mp.(again to be identified with a projective representation of SL..) we get.a representation of ...with central character., i.e..for all..
24#
發(fā)表于 2025-3-25 18:13:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:55:52 | 只看該作者
Spherical Representations,e existence of a non-zero vector fixed by the compact-open subgroup ..(.), where (.);is the ring of integers in . For global considerations it is always necessary to have sufficient information on spherical representations.
26#
發(fā)表于 2025-3-26 00:33:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:22 | 只看該作者
The Jacobi Group,ns which may be more or less appropriate for the different parts of the theory. So we will discuss here several realizations and change from one to the other from time to time. To keep track it is helpful to think of the Jacobi group as a certain subgroup of a bigger symplectic group.
28#
發(fā)表于 2025-3-26 09:21:52 | 只看該作者
Basic Representation Theory of the Jacobi Group,n this chapter we will collect some general material, mainly going back to Mackey, which will be useful in all three cases. We start by explaining the induction procedure, and apply it to describe the representations of the Heisenberg group. We treat the representations of the Jacobi group .. with t
29#
發(fā)表于 2025-3-26 14:56:13 | 只看該作者
Local Representations: The Real Case,which is a genuine representation of the metaplectic cover.and may be identified with a projective representation of.If we tensorize.with another genuine representation.of the metaplectic cover Mp.(again to be identified with a projective representation of SL..) we get.a representation of ...with ce
30#
發(fā)表于 2025-3-26 18:04:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
轮台县| 武平县| 灵川县| 巴中市| 鄂州市| 高要市| 黑水县| 翁源县| 六枝特区| 龙海市| 镇巴县| 香格里拉县| 颍上县| 双辽市| 鄂伦春自治旗| 太保市| 遂宁市| 五指山市| 镇雄县| 衢州市| 恭城| 利川市| 贡山| 竹北市| 吴川市| 鸡泽县| 滨州市| 都兰县| 淅川县| 镇远县| 铜陵市| 梓潼县| 九江县| 城步| 寻乌县| 东源县| 康平县| 昌都县| 山阴县| 金华市| 凭祥市|