找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Number Theory; John Stillwell Textbook 2003 Springer Science+Business Media New York 2003 Euclidean algorithm.number theory.pr

[復(fù)制鏈接]
樓主: Localized
21#
發(fā)表于 2025-3-25 06:09:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:50 | 只看該作者
Ideals,This chapter pursues the idea that a number is known by the set of its multiples, so an “ideal number” is known by a set that . a set of multiples. Such a set . in a ring . is called an ideal, and it is defined by closure under sums (. ∈ . ? . + . ∈ .) and under multiplication by all elements of the ring (. ∈ ., . ∈ . ? . ∈ .).
23#
發(fā)表于 2025-3-25 14:05:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:00 | 只看該作者
Bankenaufsichtsrechtliche Bestimmungene way, why 1 is . regarded as a prime—nothing is built from products of 1 except 1 itself). But even if primes are the building blocks, it is not easy to grasp them directly. There is no simple way to test whether a given natural number is prime, nor to find the smallest prime divisor of a given number.
25#
發(fā)表于 2025-3-25 21:16:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:25:04 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:45:06 | 只看該作者
The Pell equation,ratic Diophantine equations. The Greeks studied the special case . ? 2. = 1 because they realized that its natural number solutions throw light on the nature of .. There is a similar connection between the natural number solutions of . ? . = 1 and . when . is any nonsquare natural number.
29#
發(fā)表于 2025-3-26 14:32:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:42:50 | 只看該作者
978-1-4419-3066-8Springer Science+Business Media New York 2003
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金昌市| 连山| 阿克苏市| 邵阳县| 金秀| 屯门区| 灵璧县| 丽水市| 杭锦后旗| 汉寿县| 游戏| 招远市| 时尚| 武宣县| 平度市| 嘉荫县| 蓝田县| 韶山市| 巴林右旗| 深圳市| 保定市| 海盐县| 博湖县| 太康县| 东城区| 怀远县| 城口县| 英超| 南安市| 上蔡县| 南康市| 孟州市| 焦作市| 修水县| 胶南市| 公安县| 通海县| 斗六市| 莱阳市| 绥宁县| 广昌县|