找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Homotopy Theory; George W. Whitehead Textbook 1978 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: mortality
21#
發(fā)表于 2025-3-25 06:15:46 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:53 | 只看該作者
,The Role of Tomorrow’s Manager,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
23#
發(fā)表于 2025-3-25 13:33:12 | 只看該作者
24#
發(fā)表于 2025-3-25 19:40:19 | 只看該作者
Postnikov Systems,In Chapter V we showed how to use the process of attaching cells to construct CW-complexes with desired properties. In this Chapter we shall exploit this process further, one of our aims being to show how any space can be built up, up to homotopy type, out of Eilenberg-MacLane spaces.
25#
發(fā)表于 2025-3-25 21:52:01 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:09 | 只看該作者
27#
發(fā)表于 2025-3-26 07:21:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:45:25 | 只看該作者
Andrew M. McCosh,Michael S. Scott Mortonin . which end at the base point; then the map .: P’(B) . . defined by . = .(0) is a fibration with . as fibre. The total space P’(.) being acyclic, the boundary operator . is an isomorphism, and the map . induces . the homomorphism
29#
發(fā)表于 2025-3-26 14:51:45 | 只看該作者
Introductory Notions,ns of homotopy theory: extension and lifting problems. The notion of hom-otopy is introduced, and its connection with the above problems discussed. This leads to a formulation of fibrations and cofibrations, which have played such a fundamental role in the development of the subject.
30#
發(fā)表于 2025-3-26 20:05:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郑州市| 天祝| 温州市| 汪清县| 霍州市| 石狮市| 岳阳市| 常州市| 河曲县| 阳西县| 汪清县| 莲花县| 格尔木市| 蕉岭县| 东阿县| 阜新| 孝感市| 伊宁市| 兰溪市| 罗江县| 宜昌市| 彝良县| 寿光市| 台山市| 龙川县| 丹棱县| 隆林| 永年县| 南宁市| 刚察县| 正安县| 车险| 屏东市| 济南市| 伊金霍洛旗| 桓台县| 阿荣旗| 罗江县| 曲松县| 临泽县| 达日县|