找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Introduction to Spatial and Temporal Fractals; L. T. Fan,D. Neogi,M. Yashima Book 1991 Springer-Verlag Berlin Heidelberg 1991 C

[復(fù)制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 05:33:19 | 只看該作者
Introduction,are not circles, and bark is not smooth, nor does lightning travel in a straight line.” One way to envision fractals is to think of them as objects, each with a fractional dimension. In fact, fractals are almost the rule rather than exception in this universe. The exceptions are perfect lines, planes, and cubes.
22#
發(fā)表于 2025-3-25 09:26:31 | 只看該作者
Examples of Fractal Geometry,ely simple examples include, among others, the Cantor set whose topological and Euclidean dimensions are 0 and 1, respectively, and 0 < d. < 1, and the irregular surface of a particulate object, e. g., a catalyst, whose topological and Euclidean dimensions are 2 and 3, respectively, and 2 < d. ≤ 3.
23#
發(fā)表于 2025-3-25 12:53:09 | 只看該作者
0342-4901 s of chaotic dynamics. This monograph presents definitions, concepts, notions and methodologies of both spatial and temporal fractals. It addresses students and researchers in chemistry and in chemical engineering. The authors present the concepts and methodologies in sufficient detail for uninitiat
24#
發(fā)表于 2025-3-25 19:50:40 | 只看該作者
25#
發(fā)表于 2025-3-25 20:51:28 | 只看該作者
0342-4901 har particles, surface fractal dimension of charcoal; fractal analysis of pressure fluctuation in multiphase flow systems. Readers who master the concepts in this book, can confidently apply them to their fields of interest.978-3-540-54212-4978-3-642-45690-9Series ISSN 0342-4901 Series E-ISSN 2192-6603
26#
發(fā)表于 2025-3-26 04:07:29 | 只看該作者
27#
發(fā)表于 2025-3-26 05:32:46 | 只看該作者
28#
發(fā)表于 2025-3-26 10:41:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:02 | 只看該作者
Epilog,eared towards the study of diverse aspects of diverse objects, either mathematical or natural, that are not smooth, but rough and fragmented to the same degree at all scales. Fractals are far more than the fantastic fruits of the cross-matching of geometric theory and computer graphics. Both the spa
30#
發(fā)表于 2025-3-26 19:07:24 | 只看該作者
Book 2001nomy, how can we distinguish true needs from simple of fashion? How can we distinguish between necessity and fancy? whims How can we differentiate conviction from opinion? What is the meaning of this all? Where is the civilizing project? Where is the universal outlook of the minds that might be capa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 06:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江市| 旅游| 凭祥市| 灵武市| 大方县| 陇南市| 武鸣县| 金坛市| 靖江市| 康保县| 禄丰县| 呼和浩特市| 平武县| 宁城县| 普安县| 峨山| 上饶县| 栾城县| 徐闻县| 乌苏市| 瑞金市| 八宿县| 禄劝| 响水县| 扎囊县| 康乐县| 武清区| 射阳县| 靖江市| 嫩江县| 汉源县| 突泉县| 句容市| 台州市| 琼海市| 泸溪县| 西充县| 略阳县| 巩留县| 兴文县| 遂平县|