找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Differential Geometry; Andrew Pressley Textbook 20011st edition Springer-Verlag London 2001 Curves and Surfaces.Euclidean Geome

[復(fù)制鏈接]
樓主: DART
31#
發(fā)表于 2025-3-26 21:09:05 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:21 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:54 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:37 | 只看該作者
35#
發(fā)表于 2025-3-27 14:46:25 | 只看該作者
Gaussian Curvature and the Gauss Map, remarkable property, established in Chapter 10, that it is unchanged when the surface is bent without stretching, a property that is not shared by the principal curvatures. In the present chapter, we discuss some more elementary properties of the gaussian and mean curvatures, and what a knowledge of them implies about the geometry of the surface.
36#
發(fā)表于 2025-3-27 17:50:35 | 只看該作者
Minimal Surfaces,rn out to be surfaces whose mean curvature vanishes everywhere. The study of these so-called minimal surfaces was initiated by Euler and Lagrange in the mid-18th century, but new examples of minimal surfaces have been discovered quite recently.
37#
發(fā)表于 2025-3-27 23:10:42 | 只看該作者
https://doi.org/10.1007/978-3-322-87461-0he surface does . change. The real importance of the Gauss—Bonnet theorem is as a prototype of analogous results which apply in higher dimensional situations, and which relate . properties to . ones. The study of such relations is one of the most important themes of 20th century Mathematics.
38#
發(fā)表于 2025-3-28 04:05:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:39:46 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兖州市| 南溪县| 辽宁省| 南华县| 襄城县| 荆州市| 烟台市| 清水县| 华坪县| 社旗县| 江城| 交口县| 伊宁县| 衡山县| 鄂温| 中阳县| 峡江县| 晋中市| 贵阳市| 思南县| 四平市| 札达县| 高平市| 渝中区| 台州市| 托里县| 赣榆县| 会宁县| 繁昌县| 汝城县| 丽江市| 措美县| 石景山区| 辽宁省| 理塘县| 民县| 浦北县| 五河县| 南投市| 丹阳市| 柳河县|