找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Continuum Mechanics for Everyone; With Applications to Esben Byskov Book 2013 Springer Science+Business Media Dordrecht 2013 Con

[復(fù)制鏈接]
樓主: 有作用
41#
發(fā)表于 2025-3-28 16:22:52 | 只看該作者
42#
發(fā)表于 2025-3-28 19:06:43 | 只看該作者
Infinitesimal TheoryProbably some 99?% of all structural analyses are based on the assumption of kinematic linearity. Therefore, we shall study this special case in muchdetail, but caution that you must understand the limitations of the linear theories in order to use them judiciously.
43#
發(fā)表于 2025-3-29 00:00:13 | 只看該作者
Constitutive RelationsThis chapter is mainly concerned with constitutive relations for the infinitesimal theory, i.e. the mathematically linear theory. However, most of the formulas may be made valid for kinematically nonlinear cases provided sufficient care is taken in the selection of strain and stress measures.
44#
發(fā)表于 2025-3-29 03:05:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:41:02 | 只看該作者
Plane, Straight BeamsIn this chapter we derive the kinematic and static equations for plane, straight beams. The reason why we do not treat beams in three-dimensional space is that this is not a book on beam theory—but rather a book on continuum mechanics which also shows how to derive theories for specialized continua such as beams and plates.
46#
發(fā)表于 2025-3-29 13:02:41 | 只看該作者
47#
發(fā)表于 2025-3-29 17:02:01 | 只看該作者
Bending and Axial Deformation of Linear Elastic Beam Cross-SectionsIn . and ., which are concerned with plane, straight linearly elastic beams, the first with Bernoulli-Euler and the second with Timoshenko beams, respectively.
48#
發(fā)表于 2025-3-29 22:39:54 | 只看該作者
49#
發(fā)表于 2025-3-30 03:41:47 | 只看該作者
50#
發(fā)表于 2025-3-30 04:34:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开封县| 唐河县| 荥经县| 中西区| 茶陵县| 临洮县| 安福县| 南江县| 肇州县| 丰宁| 石台县| 五原县| 陆良县| 杭锦后旗| 湄潭县| 板桥市| 永兴县| 十堰市| 桦南县| 武义县| 山西省| 个旧市| 江陵县| 中江县| 萝北县| 正宁县| 邹城市| 成都市| 临泽县| 清水县| 蓝山县| 招远市| 洱源县| 上犹县| 新田县| 兴和县| 东乡| 柏乡县| 屏南县| 巴彦县| 密山市|