找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 05:00:37 | 只看該作者
Other inorganic electrolytic processes,pecificity and stability of electronic nose in practical application. This chapter presents an on-line counteraction of unwanted odor interference based on pattern recognition for the first time. Six kinds of target gases and four kinds of unwanted odor interferences were experimentally studied. Fir
22#
發(fā)表于 2025-3-25 08:15:27 | 只看該作者
https://doi.org/10.1007/978-981-13-2167-2Electronic Nose; Pattern Recognition; Drift Compensation; Odor Recognition; Machine Learning; Gas Sensing
23#
發(fā)表于 2025-3-25 14:09:09 | 只看該作者
978-981-13-4741-2Springer Nature Singapore Pte Ltd. 2018
24#
發(fā)表于 2025-3-25 16:17:01 | 只看該作者
25#
發(fā)表于 2025-3-25 20:38:43 | 只看該作者
Industrial Development and Eco-Tourismsent analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components. In this chapter, the NDA framework is derived with specific implementations. Experimental results demonstrate the superiority of the proposed KNDA method in multi-class recognition.
26#
發(fā)表于 2025-3-26 01:11:34 | 只看該作者
27#
發(fā)表于 2025-3-26 08:21:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:30:52 | 只看該作者
Cross-Domain Subspace Learning Approachk called cross-domain extreme learning machine (CdELM), which aims at learning a common (shared) subspace across domains. Experiments on drifted E-nose datasets demonstrate that the proposed CdELM method significantly outperforms other compared methods.
29#
發(fā)表于 2025-3-26 13:01:42 | 只看該作者
Chaos-Based Neural Network Optimization Approachence optimization BPNN method. Experimental results demonstrate the superiority and efficiency of the portable E-nose instrument integrated into chaos-based artificial neural network optimization algorithms in real-time monitoring of air quality in dwellings.
30#
發(fā)表于 2025-3-26 19:50:40 | 只看該作者
Discriminative Support Vector Machine-Based Odor Classificationntal results demonstrate that the HSVM model outperforms other classifiers in general. Also, HSVM classifier preliminarily shows its superiority in solution to discrimination in various electronic nose applications.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐昌市| 仙居县| 梓潼县| 定兴县| 阳新县| 洱源县| 溆浦县| 绍兴县| 灵寿县| 银川市| 东乌| 宾阳县| 陈巴尔虎旗| 剑阁县| 广灵县| 九龙城区| 金堂县| 新巴尔虎右旗| 潜江市| 柏乡县| 株洲市| 长治县| 土默特右旗| 安平县| 咸宁市| 波密县| 玉田县| 璧山县| 晋中市| 左权县| 定陶县| 兴业县| 白水县| 阿克苏市| 德兴市| 化州市| 黔西县| 黄陵县| 西宁市| 白山市| 阳新县|