找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Fields and Waves in Fractional Dimensional Space; Muhammad Zubair,Muhammad Junaid Mughal,Qaisar Abba Book 2012 The Editor(

[復(fù)制鏈接]
樓主: Annihilate
21#
發(fā)表于 2025-3-25 05:51:36 | 只看該作者
22#
發(fā)表于 2025-3-25 09:49:05 | 只看該作者
Introduction, fills the Euclidean space in which it lies. Since, a medium composed of such fractal objects can be considered as non-integer dimensional fractal media, the analytical results of this work provide the necessary tools for analyzing the behavior of electromagnetic fields and waves in it.
23#
發(fā)表于 2025-3-25 13:37:36 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:23 | 只看該作者
Electromagnetic Wave Propagation in Fractional Space,ectively describe the wave propagation phenomenon in fractal media. In this chapter, exact solutions of different forms of wave equation in .-dimensional fractional space are provided, which describe the phenomenon of electromagnetic wave propagation in fractional space.
25#
發(fā)表于 2025-3-25 21:09:43 | 只看該作者
2191-530X ents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves.? It provides demonstrates the advantages in studying? the behavior of electromagnetic fields and waves in fractal media. .The book presents novel fractional space generalization of the differenti
26#
發(fā)表于 2025-3-26 00:35:43 | 只看該作者
Eine praxisorientierte Fortbildungsreihebeen worked out in fractional space. The differential electromagnetic equations in fractional space, established in this chapter, provide a basis for application of the concept of fractional space in practical electromagnetic wave propagation and scattering problems in fractal media.
27#
發(fā)表于 2025-3-26 04:18:46 | 只看該作者
28#
發(fā)表于 2025-3-26 11:00:34 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:43 | 只看該作者
2191-530X d vector differential operators, the classical Maxwell‘s electromagnetic equations are worked out. The Laplace‘s, Poisson‘s and Helmholtz‘s equations in fractional space are derived by using modified vector differential operators.978-3-642-25357-7978-3-642-25358-4Series ISSN 2191-530X Series E-ISSN 2191-5318
30#
發(fā)表于 2025-3-26 20:39:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 桐柏县| 讷河市| 繁昌县| 枝江市| 开平市| 闵行区| 新乐市| 丹凤县| 红桥区| 阿鲁科尔沁旗| 嘉定区| 凌海市| 云霄县| 将乐县| 莱芜市| 荥经县| 赤峰市| 新宁县| 临沭县| 馆陶县| 虹口区| 林甸县| 绵阳市| 和田市| 谢通门县| 凯里市| 修武县| 华坪县| 永年县| 琼结县| 武冈市| 枣强县| 济阳县| 铁岭县| 炎陵县| 邵东县| 龙泉市| 甘孜县| 崇阳县| 进贤县|