找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elastic and Thermoelastic Problems in Nonlinear Dynamics of Structural Members; Applications of the Jan Awrejcewicz,Vadim A. Krysko Book 2

[復(fù)制鏈接]
樓主: HAG
51#
發(fā)表于 2025-3-30 11:03:13 | 只看該作者
52#
發(fā)表于 2025-3-30 14:19:18 | 只看該作者
53#
發(fā)表于 2025-3-30 20:20:09 | 只看該作者
54#
發(fā)表于 2025-3-30 22:24:43 | 只看該作者
https://doi.org/10.1007/978-3-642-94619-6he next section, boundary and initial conditions are attached to the differential equations. In Sect. 5.4, the existence and uniqueness of a solution as well as the convergence of the Bubnov–Galerkin method, are rigorously discussed.
55#
發(fā)表于 2025-3-31 02:28:23 | 只看該作者
Forschungsdesign und methodisches Vorgehen,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
56#
發(fā)表于 2025-3-31 08:58:59 | 只看該作者
57#
發(fā)表于 2025-3-31 10:38:39 | 只看該作者
58#
發(fā)表于 2025-3-31 17:12:38 | 只看該作者
Coupled Thermoelasticity and Transonic Gas Flow,ic problems of shallow shells modelled by the Kirchhoff–Love and Timoshenko theories defined earlier. In Sect. 2.1.5, theorems related to the existence and uniqueness of a general, “classical” solution to the coupled abstract program are given, and then the corresponding theorems for coupled thermoelastic problems of shallow shells are formulated.
59#
發(fā)表于 2025-3-31 19:25:19 | 只看該作者
,Estimation of the Errors of the Bubnov–Galerkin Method,d discussed. Finally, a prior estimate for the Bubnov–Galerkin method to a problem generalizing a class of dynamical problems of elasticity (without a heat transfer equation) for both three-dimensional and thin-walled elements of structures is given.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柘荣县| 胶南市| 鄯善县| 思南县| 疏附县| 湟源县| 读书| 台安县| 民乐县| 濮阳县| 蓬莱市| 焉耆| 龙山县| 乐东| 田东县| 正镶白旗| 太仓市| 淅川县| 盐亭县| 沙田区| 龙门县| 雅江县| 同仁县| 盐边县| 沾益县| 尖扎县| 福建省| 翼城县| 泗洪县| 樟树市| 安岳县| 卢氏县| 屏边| 邛崃市| 新丰县| 邵阳县| 德格县| 垦利县| 文化| 渝中区| 景东|