找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elastic Waves and Metamaterials: The Fundamentals; Yoon Young Kim Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
樓主: Truman
11#
發(fā)表于 2025-3-23 11:27:34 | 只看該作者
Anpassung, Messung und Erfahrung,As demonstrated by the wave analysis in Chap. 9, perfect transmission between two media with different impedances is not generally possible. Perfect transmission refers to the transmission of a wave with 100% power efficiency from one medium to another.
12#
發(fā)表于 2025-3-23 14:18:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:55:21 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:38 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:00 | 只看該作者
Effective Material Property Manipulation in 1D Lattice Systems,The previous chapters investigate wave phenomena in one-dimensional lattice systems. Even at extremely low frequencies, intriguing wave phenomena, such as bandgap formation, can be observed if additional masses and springs are elaborately added to the system. Such phenomena are not typically observed in conventional lattice systems.
16#
發(fā)表于 2025-3-24 09:19:27 | 只看該作者
17#
發(fā)表于 2025-3-24 12:03:43 | 只看該作者
18#
發(fā)表于 2025-3-24 14:56:06 | 只看該作者
Flexural Waves in a Beam,A beam is a long, slender member with bending as its predominant mode of deformation. Beams and strings both experience transverse displacements, but beams exhibit a structural resistance known as flexural (or bending) rigidity, whereas strings do not.
19#
發(fā)表于 2025-3-24 19:34:04 | 只看該作者
Fundamentals of Elastic Waves in 2D Elastic Media,Before discussing extraordinary two-dimensional (2D) wave phenomena using 2D elastic metamaterials in the next chapter (Chap. .), we present the fundamentals of elastic wave phenomena in 2D elastic media, such as dispersion relations.
20#
發(fā)表于 2025-3-25 03:09:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马山县| 东光县| 津市市| 潢川县| 广元市| 临安市| 和政县| 札达县| 绵阳市| 深泽县| 罗田县| 沿河| 卓资县| 乐陵市| 奈曼旗| 青田县| 翁源县| 芒康县| 万载县| 凌云县| 隆林| 清原| 涿州市| 五台县| 泾源县| 阳城县| 霍邱县| 宜春市| 雷州市| 安福县| 平陆县| 阜新市| 通州区| 民县| 修武县| 稻城县| 陆良县| 瑞昌市| 万载县| 房产| 千阳县|