找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復(fù)制鏈接]
樓主: Recovery
41#
發(fā)表于 2025-3-28 16:18:57 | 只看該作者
Riemannian Functionals,y can be recovered from the action (math) (total scalar curvature). His paper contains prophetic ideas about the role played by the diffeomorphism group, which he already considered as a “gauge group”.
42#
發(fā)表于 2025-3-28 22:43:17 | 只看該作者
43#
發(fā)表于 2025-3-28 23:16:20 | 只看該作者
Book 1987 which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals..
44#
發(fā)表于 2025-3-29 06:28:05 | 只看該作者
https://doi.org/10.1007/978-3-642-29546-1these circumstances, it has been possible to exhibit some existence theorems of Einstein metrics in the K?hler framework (Calabi-Yau and Aubin-Calabi-Yau theorems) which have no counterpart in general Riemannian geometry.
45#
發(fā)表于 2025-3-29 07:27:12 | 只看該作者
46#
發(fā)表于 2025-3-29 15:12:22 | 只看該作者
47#
發(fā)表于 2025-3-29 16:06:21 | 只看該作者
Geburtshilfliche Operationslehred . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point . of . a Euclidean structure .. on the tangent space ... of . at . and require the association . ? .. to be ... We say that . is a Riemannian . on ..
48#
發(fā)表于 2025-3-29 22:21:23 | 只看該作者
49#
發(fā)表于 2025-3-30 02:44:29 | 只看該作者
50#
發(fā)表于 2025-3-30 07:53:54 | 只看該作者
Book 1987em. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant li
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾阳县| 溆浦县| 江源县| 宁夏| 鄂伦春自治旗| 辉南县| 隆昌县| 定日县| 浑源县| 肃南| 百色市| 崇信县| 武定县| 会理县| 梁山县| 武乡县| 达日县| 花垣县| 三明市| 孙吴县| 聂拉木县| 普兰县| 同江市| 亚东县| 龙南县| 肃北| 松溪县| 边坝县| 兰溪市| 巫溪县| 黎城县| 政和县| 禹城市| 迁安市| 资源县| 天津市| 蓬莱市| 青州市| 开江县| 宽甸| 利川市|