找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einleitung in die Theorie der Invarianten linearer Transformationen auf Grund der Vektorenrechnung; E. Study Book 1923 Springer Fachmedien

[復(fù)制鏈接]
樓主: 教條
51#
發(fā)表于 2025-3-30 09:53:39 | 只看該作者
,Beispiel: Tern?re bilineare Formen mit kontragredienten Ver?nderlichen,zur Gruppe . (..) geh?rigen ganzen und rationalen Invarianten und Kovarianten, unter denen wir solche Invarianten verstehen wollen, in denen etwa neben dem Kern von . auch noch zwei Vektoren . und . vorkommen.). Es wird ein System von einigen wenigen, und ihrer Zahl nach nicht mehr zu verringernden
52#
發(fā)表于 2025-3-30 12:55:56 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:13 | 只看該作者
,Fortsetzung: Besondere F?lle,olgt aus dieser Annahme (die weiterhin mit .) bezeichnet werden soll), da? unter den symbolischen Potenzen von . drei linear-unabh?ngige Formen vorkommen, .., .., ... Wir lassen die genannte Einschr?nkung nunmehr fallen; es soll versucht werden, eine ersch?pfende Aufz?hlung aller vorliegenden M?glic
54#
發(fā)表于 2025-3-31 00:32:25 | 只看該作者
55#
發(fā)表于 2025-3-31 04:53:31 | 只看該作者
56#
發(fā)表于 2025-3-31 06:48:07 | 只看該作者
57#
發(fā)表于 2025-3-31 11:38:33 | 只看該作者
58#
發(fā)表于 2025-3-31 16:49:21 | 只看該作者
59#
發(fā)表于 2025-3-31 19:55:25 | 只看該作者
ht alle voneinander verschieden zu sein, sie sind es aber in der Regel.), und wir wollen annehmen, da? sie es wirklich sind. Unter diesen Einschr?nkungen gilt der folgende Lehrsatz (Satz von Desargues oder ?Satz von den Perspektiven Dreiecken“).
60#
發(fā)表于 2025-3-31 22:58:21 | 只看該作者
,Weitere Beispiele: Lehrs?tze von Desargues, Pascal und Brianchon,ht alle voneinander verschieden zu sein, sie sind es aber in der Regel.), und wir wollen annehmen, da? sie es wirklich sind. Unter diesen Einschr?nkungen gilt der folgende Lehrsatz (Satz von Desargues oder ?Satz von den Perspektiven Dreiecken“).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄城县| 哈巴河县| 武川县| 南丹县| 洪泽县| 内乡县| 丰都县| 绵竹市| 巢湖市| 莲花县| 东乌珠穆沁旗| 巴中市| 清原| 肇庆市| 侯马市| 沽源县| 珲春市| 崇阳县| 北川| 田东县| 册亨县| 民权县| 安乡县| 八宿县| 龙井市| 榆社县| 西华县| 施秉县| 石嘴山市| 达孜县| 渝中区| 东宁县| 南涧| 清水河县| 岑巩县| 大连市| 鸡东县| 壤塘县| 兴海县| 林周县| 崇信县|