找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einführung in den Lagrange- und Hamilton-Formalismus; Kanonische Theorie k Robin Santra Textbook 2022 Der/die Herausgeber bzw. der/die Auto

[復(fù)制鏈接]
樓主: 出租車(chē)
11#
發(fā)表于 2025-3-23 10:59:01 | 只看該作者
Anwendungen des Lagrange-Formalismuserden kann. Von gro?er Bedeutung für die moderne Physik ist die Herleitung der Lagrange-Funktion für ein elektrisch geladenes Teilchen im elektromagnetischen Feld. Der Fokus bei der Bestimmung der Lagrange-Funktion liegt dabei auf der Verwendung der elektromagnetischen Potentiale.
12#
發(fā)表于 2025-3-23 16:00:31 | 只看該作者
13#
發(fā)表于 2025-3-23 20:26:35 | 只看該作者
Lineare Kettebauend auf der Theorie der kleinen Schwingungen. Danach verwenden wir eine feldtheoretische Beschreibung, indem wir die Lineare Kette als ein Kontinuum auffassen, also den Gleichgewichtsabstand der Teilchen in einem gewissen Sinn als klein ansehen.
14#
發(fā)表于 2025-3-24 01:37:18 | 只看該作者
Kovarianz im Lagrange-Formalismus, die mit der Speziellen Relativit?tstheorie vereinbar sein sollen. Ist die Lagrange-Dichte eines Feldes ein Skalar, ergibt die dazugeh?rige Euler-Lagrange-Gleichung automatisch eine kovariante Bewegungsgleichung. Wir nutzen diese und weitere überlegungen zu einer Herleitung der sogenannten Klein-Gordon-Gleichung.
15#
發(fā)表于 2025-3-24 06:04:21 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:07 | 只看該作者
Relativistische TeilchenStrategie kennen, um diese und weitere Schwierigkeiten zu überwinden. Wir verwenden dazu das Konzept der Kovarianz, um für die Dynamik eines geladenen Teilchens im elektromagnetischen Feld eine relativistisch konsistente Bewegungsgleichung zu bestimmen.
17#
發(fā)表于 2025-3-24 11:34:40 | 只看該作者
18#
發(fā)表于 2025-3-24 16:09:49 | 只看該作者
Abhishek Jain,Guillaume Andreys,G. Sivakumarriablen, systematisch konstruieren. Die Hamilton-Funktion definiert die Gesamtenergie. Darüber hinaus bestimmt sie die Hamilton’schen Bewegungsgleichungen. Dabei handelt es sich um Differenzialgleichungen erster Ordnung für die Zeitentwicklung der generalisierten Koordinaten und der kanonischen Impulse.
19#
發(fā)表于 2025-3-24 19:05:16 | 只看該作者
Martin Karresand,Nahid Shahmehrischlie?en zu k?nnen, ben?tigt man den Begriff der kanonischen Transformationen. Diese lassen sich elegant mithilfe der Poisson-Klammer schreiben. Eine wichtige Schlussfolgerung davon ist ein grundlegender Zusammenhang zwischen der Poisson-Klammer und Erhaltungss?tzen, der sich in strukturell analoger Form in der Quantenmechanik wiederfindet.
20#
發(fā)表于 2025-3-25 00:04:46 | 只看該作者
G. Bortolan,I. Christov,W. Pedryczelegt als auch eine Bedingung, die Koordinatentransformationen erfüllen müssen. Auf dieser Grundlage werden dann Tensoren definiert. Wie Sie in den verbleibenden Kapiteln sehen k?nnen, hat die resultierende tensorielle Klassifikation physikalischer Gr??en eine erhebliche Bedeutung für die Formulierung von physikalischen Theorien.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大兴区| 花垣县| 治县。| 皮山县| 盱眙县| 屏山县| 金阳县| 南充市| 古丈县| 明水县| 施甸县| 大渡口区| 云龙县| 剑河县| 大城县| 根河市| 措勤县| 宁阳县| 威远县| 循化| 五常市| 理塘县| 凌海市| 和政县| 安新县| 友谊县| 临沂市| 浦东新区| 专栏| 微山县| 比如县| 海丰县| 固原市| 新绛县| 诸城市| 修水县| 淮南市| 宜丰县| 伊川县| 万载县| 内丘县|