找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Processing of Deep Neural Networks; Vivienne Sze,Yu-Hsin Chen,Joel S. Emer Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: peak-flow-meter
11#
發(fā)表于 2025-3-23 10:51:08 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:59 | 只看該作者
Therapie der Harnwegsinfekte bei Kindern,ations including computer vision, speech recognition, and robotics and are often delivering better than human accuracy. However, while DNNs can deliver this outstanding accuracy, it comes at the cost of high computational complexity. With the stagnation of improvements in general-purpose computation
13#
發(fā)表于 2025-3-23 22:00:14 | 只看該作者
Overview of Deep Neural Networksapidly to improve accuracy and efficiency. In all cases, the input to a DNN is a set of values representing the information to be analyzed by the network. For instance, these values can be pixels of an image, sampled amplitudes of an audio wave, or the numerical representation of the state of some system or game.
14#
發(fā)表于 2025-3-23 23:37:16 | 只看該作者
Designing DNN Acceleratorsmultiplications, in order to achieve higher performance (i.e., higher throughput and/or lower latency) on off-the-shelf general-purpose processors such as CPUs and GPUs. In this chapter, we will focus on optimizing the processing of DNNs directly by designing specialized hardware.
15#
發(fā)表于 2025-3-24 03:30:18 | 只看該作者
Operation Mapping on Specialized Hardwaree notion of the . of the computation for a particular workload layer shape onto a specific DNN accelerator design, and the fact that the compiler-like process of picking the right mapping is important to optimize behavior with respect to energy efficiency and/or performance.
16#
發(fā)表于 2025-3-24 08:58:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:04 | 只看該作者
Efficient Processing of Deep Neural Networks978-3-031-01766-7Series ISSN 1935-3235 Series E-ISSN 1935-3243
19#
發(fā)表于 2025-3-24 22:12:40 | 只看該作者
Die Sicherung der Baugrubenwandungenapidly to improve accuracy and efficiency. In all cases, the input to a DNN is a set of values representing the information to be analyzed by the network. For instance, these values can be pixels of an image, sampled amplitudes of an audio wave, or the numerical representation of the state of some system or game.
20#
發(fā)表于 2025-3-25 03:12:48 | 只看該作者
https://doi.org/10.1007/978-3-642-49774-2multiplications, in order to achieve higher performance (i.e., higher throughput and/or lower latency) on off-the-shelf general-purpose processors such as CPUs and GPUs. In this chapter, we will focus on optimizing the processing of DNNs directly by designing specialized hardware.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜南县| 云浮市| 南川市| 锡林浩特市| 长丰县| 美姑县| 肇源县| 登封市| 岢岚县| 临猗县| 象州县| 汤原县| 湟源县| 金堂县| 景东| 沙洋县| 安图县| 石嘴山市| 潢川县| 酒泉市| 徐州市| 易门县| 广河县| 本溪市| 武隆县| 化州市| 崇左市| 钟祥市| 罗源县| 大英县| 两当县| 临猗县| 合水县| 云浮市| 尚志市| 贵州省| 内江市| 双城市| 富川| 永清县| 朝阳县|