找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Efficient Methods for Valuing Interest Rate Derivatives; Antoon Pelsser Book 2000 Springer-Verlag London 2000 Portfolio.Stochastic modelli

[復(fù)制鏈接]
樓主: 自由
31#
發(fā)表于 2025-3-26 21:15:56 | 只看該作者
Extensions and Further Developmentsand experience on working with interest rate models and how to adapt and extend these models for various purposes. Note that this final chapter is written in the “I” form to emphasise the fact that I express my personal views here. I feel this is necessary, as the practical implementation of pricing models is as much an art as it is pure science.
32#
發(fā)表于 2025-3-27 04:09:11 | 只看該作者
33#
發(fā)表于 2025-3-27 09:05:32 | 只看該作者
978-1-84996-861-4Springer-Verlag London 2000
34#
發(fā)表于 2025-3-27 10:30:59 | 只看該作者
35#
發(fā)表于 2025-3-27 16:49:28 | 只看該作者
36#
發(fā)表于 2025-3-27 20:09:29 | 只看該作者
Der Ewige Kreislauf des Weltallsver, interest rates play a double role in interest rate models: they determine the amount of discounting, and they determine the payoff of the security. This implies that the discounting term and the payoff term are two correlated stochastic variables, which makes the evaluation of the expectation quite difficult.
37#
發(fā)表于 2025-3-28 01:31:20 | 只看該作者
hapter 4 we proved that only normal models where the spot interest rate is a linear or quadratic function of the underlying process . have normally distributed fundamental solutions. Hence, only these models are expected to have a rich analytical structure.
38#
發(fā)表于 2025-3-28 03:51:09 | 只看該作者
https://doi.org/10.1007/978-3-662-41237-4own how this theory can be used for valuing interest rate derivatives. We analysed in Chapters 5 and 6 a linear and a squared normal model which both have a rich analytical structure. However, only little attention has been devoted to the empirical validity of these models. In this chapter we address this problem.
39#
發(fā)表于 2025-3-28 07:13:58 | 只看該作者
40#
發(fā)表于 2025-3-28 14:02:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武夷山市| 宝鸡市| 海兴县| 抚宁县| 博爱县| 弋阳县| 麻城市| 新河县| 兴国县| 蛟河市| 鹤山市| 晋中市| 观塘区| 永嘉县| 拉萨市| 漳平市| 神农架林区| 民县| 秀山| 体育| 山阴县| 溆浦县| 策勒县| 阿拉善左旗| 开远市| 泊头市| 墨江| 富平县| 黄骅市| 芒康县| 涟源市| 西峡县| 三台县| 潼南县| 黄龙县| 万荣县| 赞皇县| 舟曲县| 聂拉木县| 民权县| 大邑县|