找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Statistical Learning Methods for Actuaries III; Neural Networks and Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 S

[復(fù)制鏈接]
樓主: infection
31#
發(fā)表于 2025-3-27 00:52:41 | 只看該作者
Michel Denuit,Donatien Hainaut,Julien TrufinProvides an exhaustive and self-contained presentation of neural networks applied to insurance.Can be used as course material or for self-study.Features a rigorous statistical analysis of neural netwo
32#
發(fā)表于 2025-3-27 04:46:11 | 只看該作者
Springer Actuarialhttp://image.papertrans.cn/e/image/302812.jpg
33#
發(fā)表于 2025-3-27 09:18:52 | 只看該作者
Feed-Forward Neural Networks,ward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
34#
發(fā)表于 2025-3-27 10:13:57 | 只看該作者
35#
發(fā)表于 2025-3-27 15:30:39 | 只看該作者
Feed-Forward Neural Networks,ward networks. First, we discuss the preprocessing of data and next we present a survey of the different methods for calibrating such networks. Finally, we apply the theory to an insurance data set and compare the predictive power of neural networks and generalized linear models.
36#
發(fā)表于 2025-3-27 21:15:36 | 只看該作者
Bayesian Neural Networks and GLM,we cannot rely anymore on asymptotic properties of maximum likelihood estimators to approximate confidence intervals. Applying the Bayesian learning paradigm to neural networks or to generalized linear models results in a powerful framework that can be used for estimating the density of predictors.
37#
發(fā)表于 2025-3-27 22:45:50 | 只看該作者
38#
發(fā)表于 2025-3-28 06:04:28 | 只看該作者
Dimension-Reduction with Forward Neural Nets Applied to Mortality,lity. These networks contains a hidden layer, called bottleneck, that contains a few nodes compared to the previous layers. The output signals of neurons in the bottleneck carry a summarized information that aggregates input signals in a non-linear way. Bottleneck networks offer an interesting alter
39#
發(fā)表于 2025-3-28 10:12:27 | 只看該作者
40#
發(fā)表于 2025-3-28 13:27:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方城县| 凤冈县| 鸡东县| 亳州市| 隆尧县| 义乌市| 台南市| 江阴市| 舟曲县| 隆昌县| 永济市| 东宁县| 萨迦县| 荆门市| 铁岭县| 都江堰市| 武穴市| 固阳县| 客服| 岑巩县| 余江县| 和政县| 霸州市| 南召县| 遂溪县| 临城县| 江山市| 邵武市| 云龙县| 林西县| 克什克腾旗| 中牟县| 易门县| 五家渠市| 黎平县| 遵义县| 疏附县| 瑞金市| 响水县| 安达市| 同江市|