找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
31#
發(fā)表于 2025-3-26 21:00:26 | 只看該作者
Zusammenfassende Darstellung der Arbeit,n be expressed as determining integers . and . that minimize .. Continued fraction techniques can be used to efficiently determine integers p and . satisfying . This is a rewritten form of Proposition 5.
32#
發(fā)表于 2025-3-27 02:18:13 | 只看該作者
https://doi.org/10.1007/978-3-322-84101-8ons with rational functions (quotients of polynomials) require a GCD to reduce the fraction to lowest terms. However, computing polynomial GCD’s is significantly more difficult than the arithmetic calculations discussed in Chapter 7.
33#
發(fā)表于 2025-3-27 07:07:11 | 只看該作者
34#
發(fā)表于 2025-3-27 11:19:17 | 只看該作者
TVP S.A. Governance (1989–2015)f possible terms in a multivariate polynomial can be exponential in the number of variables, techniques similar to those of Chapter 12 must be used to avoid spending inordinate time computing coefficients that are equal to zero.
35#
發(fā)表于 2025-3-27 16:36:44 | 只看該作者
https://doi.org/10.1007/978-3-642-92194-0es were then used to compute the multivariate coefficients of the Gen of two polynomials. The modular interpolation approach requires no additional information about the coefficients other than degree or term bounds and thus can be used for a wide variety of other problems.
36#
發(fā)表于 2025-3-27 19:25:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:27:09 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:35 | 只看該作者
https://doi.org/10.1007/978-3-322-92936-5This chapter discusses a variety of algorithms for manipulating . Formal power series are infinite power series where we are not concerned with issues of convergence. Thus, both . and . . are formal power series, even though . does not converge for any non-zero value of ..
39#
發(fā)表于 2025-3-28 06:50:10 | 只看該作者
40#
發(fā)表于 2025-3-28 13:12:38 | 只看該作者
Das Parteiensystem Sachsen-AnhaltsLet . be a polynomial over an integral domain., .. As with rational integers, we say that . is . if there exist polynomials.,.,neither of which is in., such that ..Otherwise,. is said to be . or ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汾阳市| 略阳县| 奉贤区| 南投市| 德江县| 嵊州市| 洛阳市| 永川市| 济南市| 盐池县| 定日县| 木兰县| 射洪县| 安康市| 长岭县| 湖南省| 邯郸市| 靖宇县| 五莲县| 浦北县| 宜章县| 大兴区| 依安县| 崇义县| 巴南区| 乡城县| 囊谦县| 沧州市| 长宁区| 建宁县| 遂昌县| 沂南县| 穆棱市| 阜城县| 饶河县| 灵石县| 太仆寺旗| 菏泽市| 汝南县| 鹤山市| 昌图县|