找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
21#
發(fā)表于 2025-3-25 04:46:46 | 只看該作者
,Euclid’s Algorithm,ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
22#
發(fā)表于 2025-3-25 08:07:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:17 | 只看該作者
,Polynomial GCD’s Classical Algorithms,ons with rational functions (quotients of polynomials) require a GCD to reduce the fraction to lowest terms. However, computing polynomial GCD’s is significantly more difficult than the arithmetic calculations discussed in Chapter 7.
24#
發(fā)表于 2025-3-25 16:06:48 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:57 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:21 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:19 | 只看該作者
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/e/image/302799.jpg
29#
發(fā)表于 2025-3-26 15:14:48 | 只看該作者
Effective Polynomial Computation978-1-4615-3188-3Series ISSN 0893-3405
30#
發(fā)表于 2025-3-26 17:31:52 | 只看該作者
https://doi.org/10.1007/978-3-642-99649-8ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德格县| 灵台县| 淮滨县| 偃师市| 博爱县| 绥棱县| 尼勒克县| 德令哈市| 前郭尔| 邻水| 卓资县| 仙游县| 乌海市| 武威市| 仪征市| 永川市| 赣州市| 七台河市| 陆川县| 新兴县| 汕头市| 贵阳市| 正定县| 特克斯县| 白城市| 松滋市| 大宁县| 蒲江县| 新民市| 慈利县| 安多县| 额敏县| 永川市| 石屏县| 揭阳市| 泰兴市| 沽源县| 东平县| 潜江市| 永清县| 贞丰县|