找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Non-Hermiticity and Topology in Markovian Quadratic Bosonic Dynamics; Vincent Paul Flynn Book 2024 The Editor(s) (if applicable)

[復制鏈接]
樓主: Opulent
41#
發(fā)表于 2025-3-28 14:58:19 | 只看該作者
42#
發(fā)表于 2025-3-28 19:27:30 | 只看該作者
43#
發(fā)表于 2025-3-29 01:50:44 | 只看該作者
Das Mikroskop und seine Anwendung stable and dynamically unstable phases are defined via two distinct flavors of spectral degeneracies: . and . (KCs). These two flavors of degeneracy are distinguished by whether or not the relevant dynamical matrix is diagonalizable. This difference of origin will entail tangible differences in the
44#
發(fā)表于 2025-3-29 06:17:21 | 只看該作者
Das Mikroskop und seine Anwendung,seudo-Hermitian quantum systems in order to construct a duality transformation that restores number symmetry in dynamically stable QBHs with pairing. We find that the duality transformation is intrinsically related to the covariance matrix of the quasi-particle vacuum of the QBH. Implications for an
45#
發(fā)表于 2025-3-29 08:43:54 | 只看該作者
46#
發(fā)表于 2025-3-29 15:27:13 | 只看該作者
https://doi.org/10.1007/978-3-642-51377-0ups and, in particular, cover the basic notions of conservation laws, symmetries, and the breakdown of Noether’s theorem. Then, we introduce the specific class of Markovian systems we are interested in, i.e., those systems whose Lindblad generator is a QBL. Such generators are defined by a QBH, pair
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
肥西县| 林西县| 赣榆县| 丰顺县| 遵化市| 榆树市| 武汉市| 海原县| 阿拉善左旗| 宜兰市| 昌黎县| 嵊州市| 石景山区| 社旗县| 盐亭县| 抚松县| 海淀区| 斗六市| 灵山县| 青浦区| 宿州市| 西吉县| 孟州市| 沈阳市| 永川市| 无棣县| 常州市| 丁青县| 浮梁县| 黄平县| 深州市| 加查县| 泾阳县| 隆回县| 柏乡县| 泸溪县| 吴旗县| 嘉黎县| 闻喜县| 雅安市| 芦溪县|