找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
31#
發(fā)表于 2025-3-26 22:46:30 | 只看該作者
An Algebraic Weak Factorisation System from a Dominance factorisation system will be shown to be the class of . defined by the dominance, while the right class (algebras) is called the class of .. Proposition . can also be found in Bourke and Garner [.]. The rest of the chapter studies the (double) category of effective cofibrations a bit more closely a
32#
發(fā)表于 2025-3-27 02:54:03 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:14:02 | 只看該作者
Mould Squares and Effective Fibrationsy ingredient in this definition is the notion of a specific morphism between hyperdeformation retracts, called a .. After defining mould squares, effective fibrations are defined as arrows equipped with a right-lifting property with respect to a triple category of hyperdeformation retracts and mould
35#
發(fā)表于 2025-3-27 16:39:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:00 | 只看該作者
Effective Trivial Kan Fibrations in Simplicial Setsn which the effective cofibrations are the left maps. The right maps in this AWFS will be called the effective trivial Kan fibrations. We show that this class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial
37#
發(fā)表于 2025-3-28 00:15:12 | 只看該作者
Hyperdeformation Retracts in Simplicial Setsus that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
38#
發(fā)表于 2025-3-28 04:53:26 | 只看該作者
0075-8434 hese new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky’s model of univalent type theory in simplicial sets.978-3-031-18899-2978-3-031-18900-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
39#
發(fā)表于 2025-3-28 07:15:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
利津县| 措美县| 晋城| 磐石市| 彰化市| 六安市| 海原县| 天津市| 兴和县| 延安市| 邵东县| 双柏县| 龙川县| 镇平县| 杭锦后旗| 商河县| 武平县| 承德县| 涟源市| 静海县| 福安市| 临湘市| 濮阳县| 贺州市| 三台县| 巴里| 花垣县| 陆河县| 德江县| 蓝田县| 革吉县| 区。| 绍兴县| 拜泉县| 桦甸市| 清水河县| 饶河县| 成安县| 秦皇岛市| 梅河口市| 东辽县|