找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eddy Current Approximation of Maxwell Equations; Theory, Algorithms a Ana Alonso Rodríguez,Alberto Valli Book 2010 Springer-Verlag Milan 20

[復制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 05:41:08 | 只看該作者
Existence and uniqueness of the solution,ríguez et al. [11], we mainly focus on the magnetic boundary value problem (1.22), adding in Section 3.5 a few comments on the electric boundary value problem(1.20) and the no-flux boundary value problem (1.24).
22#
發(fā)表于 2025-3-25 08:39:46 | 只看該作者
Hybrid formulations for the electric and magnetic fields,ar potential, the latter being used only in the conducting region, or on the use of a magnetic scalar potential in the insulating region (see, e.g., Jackson [137], Silvester and Ferrari [227]). We present these formulations in Chapters 6 and 5 respectively.
23#
發(fā)表于 2025-3-25 12:44:39 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:36 | 只看該作者
https://doi.org/10.1007/978-3-642-92887-1In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
25#
發(fā)表于 2025-3-25 20:00:53 | 只看該作者
Verdampfen, Destillieren und Sublimieren,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
26#
發(fā)表于 2025-3-26 00:11:39 | 只看該作者
Setting the problem,In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
27#
發(fā)表于 2025-3-26 04:40:43 | 只看該作者
Formulations via scalar potentials,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
28#
發(fā)表于 2025-3-26 11:39:34 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:23 | 只看該作者
30#
發(fā)表于 2025-3-26 17:10:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新沂市| 江西省| 扎囊县| 射阳县| 金平| 昭平县| 连平县| 云梦县| 淮北市| 库伦旗| 南昌县| 措美县| 桃源县| 江阴市| 玉溪市| 虞城县| 尚志市| 洛川县| 长垣县| 正定县| 梁平县| 开鲁县| 新密市| 阳江市| 图木舒克市| 绥阳县| 松原市| 韶关市| 山丹县| 牡丹江市| 玉树县| 尚志市| 安达市| 珠海市| 揭东县| 台中市| 邳州市| 虹口区| 兴安盟| 黄山市| 平果县|