找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const; Geancarlo Abich,Luciano Ost,Ricardo

[復(fù)制鏈接]
查看: 12465|回復(fù): 39
樓主
發(fā)表于 2025-3-21 20:01:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const
編輯Geancarlo Abich,Luciano Ost,Ricardo Reis
視頻videohttp://file.papertrans.cn/301/300808/300808.mp4
概述Describes a virtual platform framework (i.e., SOFIA) to conduct soft error reliability assessment of CNN software.Uses novel fault injection techniques to assess the impact of CNN models running in re
叢書名稱Synthesis Lectures on Engineering, Science, and Technology
圖書封面Titlebook: Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const;  Geancarlo Abich,Luciano Ost,Ricardo
描述.This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches..
出版日期Book 2023
關(guān)鍵詞software reliability; soft error analysis; Fault Injection; Machine Learning Applied to Soft Error Asse
版次1
doihttps://doi.org/10.1007/978-3-031-18599-1
isbn_softcover978-3-031-18601-1
isbn_ebook978-3-031-18599-1Series ISSN 2690-0300 Series E-ISSN 2690-0327
issn_series 2690-0300
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const影響因子(影響力)




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const影響因子(影響力)學(xué)科排名




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const網(wǎng)絡(luò)公開度




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const被引頻次




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const被引頻次學(xué)科排名




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const年度引用




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const年度引用學(xué)科排名




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const讀者反饋




書目名稱Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Const讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:43:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:09:57 | 只看該作者
地板
發(fā)表于 2025-3-22 05:27:43 | 只看該作者
5#
發(fā)表于 2025-3-22 11:02:18 | 只看該作者
,Conclusions and?Future Work,ot affect the consistency of soft error assessment. Regarding cross-compilers, those based on LLVM appeared to be more reliable ones, with the best compiler set being the . using the . optimization flag.
6#
發(fā)表于 2025-3-22 16:51:33 | 只看該作者
Book 2023e than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a
7#
發(fā)表于 2025-3-22 20:47:33 | 只看該作者
Early Soft Error Consistency Assessment,ware stacks running at single-core resource-constrained architectures. As mentioned before, the soft error results’ consistency regarding multi-core architectures are presented in [.] which is separate from this book as they were generated by [.].
8#
發(fā)表于 2025-3-22 21:33:34 | 只看該作者
Book 2023hors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches..
9#
發(fā)表于 2025-3-23 03:19:55 | 只看該作者
10#
發(fā)表于 2025-3-23 08:40:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀柔区| 内丘县| 五寨县| 攀枝花市| 蒲城县| 德兴市| 阜阳市| 阜南县| 册亨县| 内黄县| 天镇县| 威远县| 静海县| 利川市| 伊吾县| 乌拉特后旗| 修文县| 望谟县| 察隅县| 通化县| 巫山县| 乐亭县| 安阳市| 黄山市| 尼玛县| 德令哈市| 武强县| 芜湖市| 万年县| 东台市| 沁阳市| 兴仁县| 城口县| 黔西县| 定结县| 开平市| 茶陵县| 长沙县| 静海县| 都匀市| 岐山县|