找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: EUROCODE ‘90; International Sympos Gérard Cohen,Pascale Charpin Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 1991 Algebrai

[復(fù)制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 20:08:35 | 只看該作者
Aufl?sung linearer GleichungssystemeFollowing R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
12#
發(fā)表于 2025-3-23 22:57:24 | 只看該作者
13#
發(fā)表于 2025-3-24 06:17:31 | 只看該作者
A direct proof for the automorphism group of reed solomon codes,We introduce a special basis for the description of the primitive extended cyclic codes, considered as subspaces of the modular algebra A=GF(p.)[GF(p.)]. Using properties of this basis, we determine the automorphism group of some extended cyclic codes, among the extended Reed Solomon codes.
14#
發(fā)表于 2025-3-24 09:44:06 | 只看該作者
Covering radius of RM(1,9) in RM(3,9),We give new properties about Fourier coefficients and we prove that the distance of the first order Reed-Muller code of length 512 to any cubic is at most 240.
15#
發(fā)表于 2025-3-24 12:29:13 | 只看該作者
16#
發(fā)表于 2025-3-24 17:26:38 | 只看該作者
17#
發(fā)表于 2025-3-24 20:15:57 | 只看該作者
Decoding of codes on hyperelliptic curves,In 1989, R. Pellikaan gave an algorithm which decodes geometric codes up to .-errors, where .* is the designed distance of the code. Unfortunately this algorithm is not completely effective. I present facts about the jacobian of a hyperelliptic curve which permits in some cases to perform the algorithm.
18#
發(fā)表于 2025-3-24 23:41:46 | 只看該作者
Decoding of codes on the klein quartic,Following R. Pellikaan who gave, in 1989, an algorithm which decodes geometric codes up to . errors where d* is the designed distance of the code, we describe an effective decoding procedure for some geometric codes on the Klein quartic.
19#
發(fā)表于 2025-3-25 07:10:30 | 只看該作者
Asymptotically good families of geometric goppa codes and the gilbert-varshamov bound,This note presents a generalization of the fact that most of the classical Goppa codes lie arbitrarily close to the Gilbert-Varshamov bound (cf. [2, p. 229]).
20#
發(fā)表于 2025-3-25 11:16:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永胜县| 江永县| 体育| 寿光市| 镇江市| 彭泽县| 新泰市| 雅江县| 绍兴县| 偏关县| 南皮县| 庆云县| 义马市| 九龙坡区| 新宾| 咸宁市| 边坝县| 濮阳市| 达州市| 定州市| 交城县| 太仆寺旗| 孝感市| 成安县| 新巴尔虎左旗| 乌审旗| 南宫市| 东光县| 冀州市| 长子县| 盐城市| 明溪县| 丁青县| 邹平县| 尼木县| 额济纳旗| 富蕴县| 乳源| 阜康市| 永仁县| 宝兴县|