找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ETO Multicenter Molecular Integrals; Proceedings of the F Charles A. Weatherford,Herbert W. Jones Conference proceedings 1982 D. Reidel Pub

[復(fù)制鏈接]
樓主: 關(guān)稅
51#
發(fā)表于 2025-3-30 10:43:23 | 只看該作者
52#
發(fā)表于 2025-3-30 15:22:10 | 只看該作者
Use of the Neumann Expansion in Evaluation of Multicenter Electron-Repulsion Integrals for Slater-T expansion for the inverse distance . in the elliptical coordinates which occur in linear-combination-of-r. atomic orbitals calculations with Slater-type orbitals (STD’s). The final results are expressed in terms of the well-known auxiliary functions q.(P,.). The convergence of the series is tested by calculating concrete cases.
53#
發(fā)表于 2025-3-30 17:05:29 | 只看該作者
54#
發(fā)表于 2025-3-31 00:20:47 | 只看該作者
55#
發(fā)表于 2025-3-31 02:41:42 | 只看該作者
56#
發(fā)表于 2025-3-31 05:13:09 | 只看該作者
57#
發(fā)表于 2025-3-31 12:55:26 | 只看該作者
58#
發(fā)表于 2025-3-31 14:19:42 | 只看該作者
Foucault and Complexity Theory,over Slater-type orbitals. Explicit formulas for two-center overlap., Coulomb., and hybrid. integrals have been automatically generated by computer using this method. Accurate numerical evaluation. of these formulas for all values of parameters can be achieved by machine manipulation of these formul
59#
發(fā)表于 2025-3-31 21:35:41 | 只看該作者
oblem can be reduced to the calculation of spherical Bessel transforms, i.e., integral transforms with kernel j.(kr). A very effective method for carrying out such transforms numerically using logarithmic coordinates has recently been developed, and this method is applied to the translation problem.
60#
發(fā)表于 2025-4-1 00:31:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶上县| 永城市| 宝坻区| 宣恩县| 秭归县| 南投市| 涟水县| 惠来县| 米林县| 昌图县| 辽中县| 黄龙县| 莱西市| 涟水县| 东阳市| 房产| 洛川县| 阿合奇县| 西城区| 墨玉县| 三台县| 西充县| 揭东县| 建平县| 乐亭县| 晴隆县| 荆门市| 镇坪县| 江安县| 中西区| 兴文县| 白沙| 兴国县| 香河县| 洛川县| 巨鹿县| 永春县| 康马县| 顺昌县| 邛崃市| 峡江县|