找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ECML PKDD 2020 Workshops; Workshops of the Eur Irena Koprinska,Michael Kamp,Jon Atle Gulla Conference proceedings 2020 Springer Nature Swit

[復制鏈接]
樓主: EVOKE
51#
發(fā)表于 2025-3-30 12:14:27 | 只看該作者
52#
發(fā)表于 2025-3-30 13:48:54 | 只看該作者
53#
發(fā)表于 2025-3-30 19:09:13 | 只看該作者
A Hybrid Recommendation System Based on Bidirectional Encoder Representationsad item descriptions during online shopping, which contain key information about the item and its features. However the item descriptions are in unstructured form and using them in the deep learning model is a problem. In this study, we integrate a pioneering Natural Language Processing technique in
54#
發(fā)表于 2025-3-30 22:45:42 | 只看該作者
Leveraging Multi-target Regression for Predicting the Next Parallel Activities in Event Logsdicting the activity that will be executed as the next step during process execution. However, traditional algorithms do not cope with the presence of parallel activities, thus failing to devise accurate prediction of multiple parallel activities that will be simultaneously executed. Moreover, they
55#
發(fā)表于 2025-3-31 03:54:44 | 只看該作者
The Euthyphro Problem Revisited,is close to the law and order stance. Far from offering a political judgment of value, the aim of the paper is to raise awareness about the potential implicit, and often overlooked, political assumptions and political values that may be undergirding a decision that is apparently purely technical.
56#
發(fā)表于 2025-3-31 08:20:17 | 只看該作者
57#
發(fā)表于 2025-3-31 10:59:07 | 只看該作者
https://doi.org/10.1007/978-3-662-07167-0ology, in which multi-target regression is used to predict the next parallel activities in event logs without the need of aligning traces during process executions. Experimental results show that the proposed solution achieve more accurate predictions compared to the single-target setting.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 00:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新密市| 贡嘎县| 高尔夫| 武汉市| 林州市| 永清县| 疏附县| 惠水县| 五莲县| 仪征市| 如皋市| 礼泉县| 蓬莱市| 托里县| 卢氏县| 满城县| 舒城县| 沽源县| 武汉市| 曲靖市| 丹东市| 新丰县| 南投县| 临清市| 榆社县| 枣阳市| 陇川县| 无锡市| 华阴市| 连云港市| 黔南| 淳安县| 石阡县| 海晏县| 阳城县| 普格县| 潞西市| 互助| 中阳县| 鹤壁市| 兴安县|