找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: E.B. Christoffel; The Influence of His P. L. Butzer,F. Fehér Book 1981 Springer Basel AG 1981 Euklid.physical sciences.Universit?t Stra?bur

[復(fù)制鏈接]
樓主: PED
51#
發(fā)表于 2025-3-30 09:24:59 | 只看該作者
The Work of E.B. Christoffel on the Theory of Continued Fractionstic having a close connection with the regular continued fraction for this number, secondly the expression in simple closed form of the convergents of the continued fraction expansion of quotients of Bessel functions of contiguous orders, and thirdly the continued fraction expansion of functions def
52#
發(fā)表于 2025-3-30 15:48:54 | 只看該作者
Generalisations of Padé Approximation for Chebyshev and Fourier Seriesdé approximants. Using the doubly-complex ‘.-numbers’, these definitions are extended to complex Chebyshev and complex Fourier series. It is shown that these approximants are all also defined by the generating function method. For . ≥ ., our Chebyshev series approximants are equal to the Clenshaw-Lo
53#
發(fā)表于 2025-3-30 17:07:13 | 只看該作者
An Asymptotic, Padé Approximant Method for Legendre Seriescoefficients as a function of their order. For several examples drawn from potential scattering theory, this method of acceleration of convergence is compared with two others and is found to be the most efficient, but not dramatically so.
54#
發(fā)表于 2025-3-30 21:20:22 | 只看該作者
55#
發(fā)表于 2025-3-31 01:21:25 | 只看該作者
Die Bedeutung der Arbeiten Christoffels für die Funktionentheorieions of a polygon by moving the poles appropriately (method of continuity). But it was only A. Weinstein (Math. Zeitschr. vol.21 (1923)) who gave a full and simplified proof of the mapping theorem for polygons by the method of continuity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
聊城市| 两当县| 莲花县| 遂平县| 仁布县| 九台市| 青河县| 桂阳县| 宽甸| 商洛市| 哈巴河县| 长顺县| 巍山| 夹江县| 新余市| 五台县| 满城县| 云林县| 广昌县| 和静县| 平阴县| 奈曼旗| 汉川市| 大兴区| 雷州市| 佛学| 新巴尔虎左旗| 林甸县| 普定县| 彰武县| 马公市| 伊通| 蛟河市| 禹城市| 崇州市| 中阳县| 榆社县| 南和县| 台安县| 苏尼特左旗| 安丘市|