找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics of Circle Mappings; Edson de Faria,Pablo Guarino Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: 雜技演員
31#
發(fā)表于 2025-3-26 23:52:56 | 只看該作者
ts look exactly the same. There are only two possible behaviours for such orbits. Either they are all dense on the circle, or else they are all periodic with the same period. This dichotomy can be read off from the angle by which points on the circle are rotated. The ratio of this angle to a full turn is called the ..
32#
發(fā)表于 2025-3-27 04:53:15 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:56 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:46 | 只看該作者
https://doi.org/10.1007/978-3-8274-2908-7answer Question .: let . be a topological conjugacy between two multicritical circle maps, say . and ., and assume that . identifies each critical point of . with a corresponding critical point of . having the same criticality.
35#
發(fā)表于 2025-3-27 16:05:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:19:27 | 只看該作者
Lecture Notes in Electrical Engineering a seminal paper published in 1932, Denjoy (J. Math. Pure et Appl 11:333–375, 1932) proved that every sufficiently smooth circle diffeomorphism . without periodic points is topologically equivalent to an irrational rotation. Here, the expression “sufficiently smooth” means that . is . and . is a fun
37#
發(fā)表于 2025-3-27 23:10:26 | 只看該作者
38#
發(fā)表于 2025-3-28 02:57:34 | 只看該作者
39#
發(fā)表于 2025-3-28 06:58:47 | 只看該作者
Edson de Faria,Pablo GuarinoExplores recent developments of invertible circle maps in one-dimensional dynamics.Focuses on global diffeomorphisms and smooth homeomorphisms with critical points.Aimed at graduate students and young
40#
發(fā)表于 2025-3-28 12:07:38 | 只看該作者
IMPA Monographshttp://image.papertrans.cn/e/image/284851.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南岸区| 建阳市| 台湾省| 焉耆| 中方县| 铜山县| 信宜市| 台北县| 蚌埠市| 琼海市| 滨海县| 都安| 湖北省| 巨野县| 吐鲁番市| 余江县| 上犹县| 葫芦岛市| 巴彦县| 东兴市| 亚东县| 甘肃省| 高青县| 察隅县| 根河市| 永修县| 黄平县| 华池县| 蕉岭县| 惠安县| 新乡县| 三门县| 浪卡子县| 得荣县| 徐水县| 乌什县| 连南| 麻栗坡县| 普安县| 平罗县| 洛南县|