找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition - ICDAR 2024; 18th International C Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng Conference proceedi

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 18:05:10 | 只看該作者
scribe the functional design knowledge. Nowadays, the acquisition of functional units is mainly manual, which is time-consuming and labor-intensive. Functional knowledge integration is an effective way to achieve innovation design, yet the insufficient functional units cannot effectively support the
42#
發(fā)表于 2025-3-28 20:19:03 | 只看該作者
c blocks. This paper introduces a new perspective on this task by utilizing global semantic pair relations from both token- and sentence-level language models. This approach addresses the limitations of prior work, which concentrated solely on individual semantic units like sentences. Our model proc
43#
發(fā)表于 2025-3-29 02:14:47 | 只看該作者
Within the Box: Captives of Our Own Mind, understanding (VDU) tasks. Currently, there is a reliance on large document foundation models that offer advanced capabilities but come with a heavy computational burden. In this paper, we propose a multimodal early exit (EE) model design that incorporates various training strategies, exit layer ty
44#
發(fā)表于 2025-3-29 03:38:17 | 只看該作者
ncing performance in relation extraction tasks by leveraging dependency trees. However, noise in automatically generated dependency trees poses a challenge to using syntactic dependency information effectively. In this paper, we propose an Adaptive Graph Attention Network model based on Dependency T
45#
發(fā)表于 2025-3-29 09:55:56 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:06 | 只看該作者
A Hybrid Approach for?Document Layout Analysis in?Document Imagesd PubTables benchmarks show that our approach outperforms current state-of-the-art methods. It achieves an average precision of . on PubLayNet, . on DocLayNet, and . on PubTables, demonstrating its superior performance in layout analysis. These advancements not only enhance the conversion of documen
47#
發(fā)表于 2025-3-29 18:24:53 | 只看該作者
DLAFormer: An End-to-End Transformer For Document Layout Analysisiple tasks concurrently. Additionally, we introduce a novel set of . to enhance the physical meaning of content queries in DETR. Moreover, we adopt a coarse-to-fine strategy to accurately identify graphical page objects. Experimental results demonstrate that our proposed DLAFormer outperforms previo
48#
發(fā)表于 2025-3-29 21:46:19 | 只看該作者
A Region-Based Approach for?Layout Analysis of?Music Score Images in?Scarce Data Scenariosnimal labeled data necessary for an effective model and demonstrated that our method could achieve a performance comparable with the state-of-the-art with just 8 to 32 labeled samples. The implications of our research extend beyond improving LA, providing a scalable and practical solution for digiti
49#
發(fā)表于 2025-3-30 03:09:00 | 只看該作者
Doc-DINO: A Transformer Model for?Complex Logical Document Layout Analysisncludes convolutional attention and convolutional feedforward networks to better capture relationships between inputs and enhance the model’s expressive power. The model achieves a mean Average Precision (mAP) of 65.7 on the complex document layout analysis dataset M6Doc and 64.2 on SCUT-CAB, settin
50#
發(fā)表于 2025-3-30 06:12:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新闻| 陇川县| 夏津县| 和田市| 岑巩县| 苍溪县| 宁国市| 贵州省| 木兰县| 岐山县| 汨罗市| 崇义县| 龙泉市| 焉耆| 安远县| 张家界市| 灵石县| 阿巴嘎旗| 财经| 栖霞市| 屏南县| 庆阳市| 洪泽县| 安宁市| 新巴尔虎左旗| 连江县| 嘉峪关市| 宝丰县| 蒙自县| 宜阳县| 铜鼓县| 观塘区| 韶山市| 巨鹿县| 双流县| 苗栗市| 泰兴市| 上虞市| 大埔县| 洪湖市| 福贡县|