找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis Systems; 16th IAPR Internatio Giorgos Sfikas,George Retsinas Conference proceedings 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: collude
41#
發(fā)表于 2025-3-28 15:04:42 | 只看該作者
42#
發(fā)表于 2025-3-28 18:52:04 | 只看該作者
Leveraging Semantic Segmentation Masks with?Embeddings for?Fine-Grained Form Classificationssification is impractical for large collections due to its labor-intensive and error-prone nature. To address this, we propose a representational learning strategy that integrates semantic segmentation and deep learning models such as ResNet, CLIP, Document Image Transformer (DiT), and masked auto-
43#
發(fā)表于 2025-3-29 00:42:57 | 只看該作者
DocLightDetect: A New Algorithm for?Occlusion Classification in?Identification Documentsin the physical realm raises significant challenges. Several entities, including financial institutions, insurance companies, and government services, require photos of documents sent through mobile applications to associate the physical and digital personas. This procedure entails significant compu
44#
發(fā)表于 2025-3-29 06:05:17 | 只看該作者
Confidence-Aware Document OCR Error Detection utility of OCR confidence scores for enhancing post-OCR error detection. Our study involves analyzing the correlation between confidence scores and error rates across different OCR systems. We develop ConfBERT, a BERT-based model that incorporates OCR confidence scores into token embeddings and off
45#
發(fā)表于 2025-3-29 10:09:12 | 只看該作者
46#
發(fā)表于 2025-3-29 13:20:38 | 只看該作者
oring of handwritten short descriptive answers in Japanese language exams. We used a deep neural network (DNN)-based handwriting recognizer and a transformer-based automatic scorer without correcting misrecognized characters or adding rubric annotations for scoring. We achieved acceptable agreement
47#
發(fā)表于 2025-3-29 16:42:53 | 只看該作者
https://doi.org/10.1007/978-1-349-06578-3n. This technological intervention can help streamline and standardize the decision-making process across all levels of courts. One key benefit of developing such a system is that the junior judges can benefit from the collective knowledge stored in the knowledge base, improving their ability to mak
48#
發(fā)表于 2025-3-29 23:11:52 | 只看該作者
o the coexistence of signatures with other textual and graphical elements on real-world documents. Verification systems must first detect the signature and then validate its authenticity, a dual challenge often overlooked by current datasets and methodologies focusing only on verification. To addres
49#
發(fā)表于 2025-3-30 00:09:51 | 只看該作者
50#
發(fā)表于 2025-3-30 04:52:27 | 只看該作者
e-Vision (LV) models for document analysis and predictions on document images, respectively. Usually, deep neural networks for the DocVQA task are trained on datasets lacking instructions. We show that using instruction-following datasets improves performance. We compare performance across document-
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 03:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灯塔市| 亚东县| 开鲁县| 甘泉县| 阜康市| 临西县| 丁青县| 洮南市| 丰都县| 怀化市| 蒙自县| 茂名市| 馆陶县| 江达县| 洮南市| 桐梓县| 临朐县| 淮滨县| 左权县| 江津市| 卢湾区| 夹江县| 芦溪县| 碌曲县| 延津县| 通州区| 南漳县| 阳高县| 封丘县| 高密市| 浪卡子县| 清远市| 普陀区| 吉安县| 定边县| 涟源市| 潞西市| 绥芬河市| 肇东市| 于田县| 长丰县|