找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments in Statistical Modelling; Jochen Einbeck,Hyeyoung Maeng,Konstantinos Perraki Conference proceedings 2024 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 動詞
41#
發(fā)表于 2025-3-28 15:48:39 | 只看該作者
,A Bayesian Markov-Switching for?Smooth Modelling of?Extreme Value Distributions,gime-switching is controlled by an unobservable Markovian process. Model flexibility can be enhanced considering regime-specific distributions, whose distributional parameters may be modelled using smooth functions of covariates. Here, we propose a two-state Markov-switching model using full Bayesia
42#
發(fā)表于 2025-3-28 19:20:58 | 只看該作者
43#
發(fā)表于 2025-3-29 02:06:01 | 只看該作者
44#
發(fā)表于 2025-3-29 05:58:09 | 只看該作者
,Spatial Confounding in?Gradient Boosting,ently, the . approach suggests to regress out the spatial effect in the covariate first, before estimating the model of interest. Drastic spatial confounding is observed in gradient boosting due to its step-wise procedure. In this contribution we apply the suggested two-step approach and confirm its
45#
發(fā)表于 2025-3-29 08:14:01 | 只看該作者
,Adaptive Generalized Logistic Lasso and?Its Application to?Rankings in?Sports,an implementation of an adaptive variant of the generalized lasso penalty for logistic regression using conic programming principles. This approach is flexible, robust, and fast, especially in a high-dimensional setting. The methodology is applied to sports data, with the aim of ranking soccer playe
46#
發(fā)表于 2025-3-29 11:54:31 | 只看該作者
,A Biclustering Approach via?Mixture of?Latent Trait Analyzers for?the?Analysis of?Digital Divide indetail, units (individuals) are partitioned into clusters (components) via a finite mixture of latent trait models; in each component, variables (digital skills) are partitioned into clusters (segments) by modifying the linear predictor’s specification of the original MLTA model. This allows us to i
47#
發(fā)表于 2025-3-29 19:02:55 | 只看該作者
48#
發(fā)表于 2025-3-29 20:02:29 | 只看該作者
,Integrating Single Index Effects in?Generalized Additive Models,propose a novel approach to integrate single index effects in Generalised Additive Models (GAMs). In particular, model fitting and inference are performed by exploiting the efficient methods proposed in [.]. We consider an application to daily electricity load consumption data, demonstrating improve
49#
發(fā)表于 2025-3-30 03:22:45 | 只看該作者
50#
發(fā)表于 2025-3-30 07:14:59 | 只看該作者
,Addressing Covariate Lack in?Unit-Level Small Area Models Using GAMLSS, variability in comparison with the direct estimator. The performance of the proposed model used to estimate the Theil index is evaluated based on design-based simulations. An application to the Italian Regions, distinguish between Urban, Peri-Urban and Rural areas, conclude the paper.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同县| 凤山市| 和顺县| 霍邱县| 洛宁县| 独山县| 托克逊县| 民乐县| 邵阳县| 石门县| 安义县| 新河县| 岑巩县| 南平市| 微博| 泸水县| 宁波市| 都兰县| 香格里拉县| 克东县| 德江县| 齐齐哈尔市| 斗六市| 寻乌县| 大关县| 东宁县| 蓝山县| 昂仁县| 新乐市| 宣恩县| 健康| 衡水市| 确山县| 平利县| 巴彦淖尔市| 临澧县| 施甸县| 南华县| 焉耆| 宁夏| 旬阳县|