找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models; 4th MICCAI Workshop, Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2025 The Editor(s) (if app

[復制鏈接]
樓主: 切口
51#
發(fā)表于 2025-3-30 10:50:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:25:56 | 只看該作者
,Vorbildfunktion der Führungskraft,compressed images, these metrics have shown very useful. Extensive tests of such metrics on benchmarks of artificially distorted natural images have revealed which metric best correlate with human perception of quality. Direct transfer of these metrics to the evaluation of generative models in medic
53#
發(fā)表于 2025-3-30 19:32:47 | 只看該作者
Christian St?we,Lara Keromosemitocal imaging. However, collecting the necessary amount of data is often impractical due to patient privacy concerns or restricted time for medical annotation. Recent advances in generative models in medical imaging with a focus on diffusion-based techniques could provide realistic-looking synthetic s
54#
發(fā)表于 2025-3-30 21:42:50 | 只看該作者
55#
發(fā)表于 2025-3-31 02:08:57 | 只看該作者
,Das ?rgernis: ?Der Druck macht fertig“, only lead to uncertainty in the reconstructed image but also in downstream tasks such as semantic segmentation. This uncertainty, however, is mostly not analyzed in the literature, even though probabilistic reconstruction models are commonly used. These models can be prone to ignore plausible but u
56#
發(fā)表于 2025-3-31 06:23:06 | 只看該作者
Dieter Buchner,Josef A. Schmelzerconcerns. Existing image quality metrics often rely on reference images, are tailored for group comparisons, or are intended for 2D natural images, limiting their efficacy in complex domains like medical imaging. This study introduces a novel deep learning-based non-reference approach to assess brai
57#
發(fā)表于 2025-3-31 10:53:17 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:57 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:19 | 只看該作者
60#
發(fā)表于 2025-3-31 23:04:03 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 22:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴和县| 昔阳县| 尉氏县| 车险| 永昌县| 白山市| 伊宁市| 洛扎县| 会宁县| 汝州市| 白城市| 金沙县| 屏东市| 潜江市| 呈贡县| 柳林县| 云霄县| 铁力市| 百色市| 五寨县| 南靖县| 双流县| 乌兰浩特市| 浦北县| 山西省| 星子县| 上蔡县| 渭源县| 溧水县| 万安县| 潼南县| 灵台县| 都兰县| 萍乡市| 格尔木市| 永靖县| 探索| 满洲里市| 海原县| 邯郸市| 东丽区|