找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[復(fù)制鏈接]
樓主: intern
51#
發(fā)表于 2025-3-30 08:37:22 | 只看該作者
52#
發(fā)表于 2025-3-30 14:06:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:37:03 | 只看該作者
CrimeAlarm: Towards Intensive Intent Dynamics in?Fine-Grained Crime PredictionMeanwhile, the output probability distributions are reciprocally learned between prediction networks to model unobserved criminal intents. Extensive experiments show that CrimeAlarm outperforms state-of-the-art methods in terms of NDCG@5, with improvements of 4.51% for the NYC16 and 7.73% for the CH
54#
發(fā)表于 2025-3-30 22:09:16 | 只看該作者
55#
發(fā)表于 2025-3-31 04:49:18 | 只看該作者
56#
發(fā)表于 2025-3-31 07:29:51 | 只看該作者
scCDCG: Efficient Deep Structural Clustering for?Single-Cell RNA-Seq via?Deep Cut-Informed Graph Embptures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) ., tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) . that si
57#
發(fā)表于 2025-3-31 11:28:00 | 只看該作者
58#
發(fā)表于 2025-3-31 15:30:28 | 只看該作者
59#
發(fā)表于 2025-3-31 18:45:59 | 只看該作者
60#
發(fā)表于 2025-4-1 01:17:28 | 只看該作者
Hierarchical Cross-Level Graph Contrastive Learning for?Drug-Drug Interaction Predictions. Finally, a cross-level contrastive learning module is introduced to align multi-view information. Extensive evaluation on real-world datasets demonstrates that our method outperforms existing competitors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴江市| 灵武市| 筠连县| 延川县| 界首市| 锡林浩特市| 玉溪市| 遵义县| 堆龙德庆县| 徐州市| 拜城县| 政和县| 拉萨市| 辉南县| 长沙市| 军事| 安徽省| 六枝特区| 嘉峪关市| 织金县| 宁晋县| 进贤县| 甘孜县| 黔东| 科技| 巴塘县| 黄梅县| 攀枝花市| 平谷区| 苗栗市| 连城县| 乌鲁木齐县| 藁城市| 英超| 漯河市| 崇仁县| 惠安县| 侯马市| 纳雍县| 青冈县| 城步|