找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Clinical Decision-Making Using Deep Learning in Imaging; M. F. Mridha,Nilanjan Dey Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: TUMOR
41#
發(fā)表于 2025-3-28 18:04:08 | 只看該作者
42#
發(fā)表于 2025-3-28 21:39:54 | 只看該作者
43#
發(fā)表于 2025-3-29 01:24:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:51:52 | 只看該作者
45#
發(fā)表于 2025-3-29 10:40:08 | 只看該作者
46#
發(fā)表于 2025-3-29 13:21:51 | 只看該作者
Privacy-Preserving Vision-Based Detection of Pox Diseases Using Federated Learning,tential of federated learning to revolutionize disease diagnosis while preserving individual confidentiality. This research contributes to enhancing disease management and underscores the significance of privacy-aware healthcare technologies.
47#
發(fā)表于 2025-3-29 16:37:27 | 只看該作者
,Unveiling the?Unique Dermatological Signatures of?Human Pox Diseases Through Deep Transfer Learningn human monkeypox, chickenpox, cowpox, measles, normal and hand-mouth face disease. Finally, our proposed model resulted in a test accuracy of 0.90, a precision of 0.89, a recall of 0.91, and an F1 score of 0.90, which significantly outperformed all other models, avoided common skin problems and exp
48#
發(fā)表于 2025-3-29 20:53:06 | 只看該作者
,Improved Classification of?Kidney Lesions in?CT Scans Using CNN with?Attention Layers: Achieving Hi exceptional performance. With a remarkable accuracy percentage of 97.98%, and average precision, detection, and F1 score of 98%. The accuracy and performance metrics attained demonstrate the efficacy and promise of the suggested method in aiding healthcare practitioners in the preliminary evaluatio
49#
發(fā)表于 2025-3-30 03:32:34 | 只看該作者
,Advancing Breast Cancer Diagnosis: Attention-Enhanced U-Net for?Breast Cancer Segmentation,significant potential for augmenting accuracy and resilience in analyzing medical images related to various organs. This is achieved by providing a mechanism to assimilate specialized knowledge tailored to specific tasks within deep learning frameworks. Additionally, our comparative analysis against
50#
發(fā)表于 2025-3-30 05:46:06 | 只看該作者
,Privacy Preserving Breast Cancer Prediction with?Mammography Images Using Federated Learning,ographic data may lead to precision medicine. The goal is to improve patient quality of life, reduce mortality, and enhance early detection. With a dataset of four classes and 6,649 images, the model achieves 72.46% accuracy, laying the foundation for advanced privacy-preserving risk prediction mode
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 06:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
株洲市| 嘉禾县| 赤峰市| 平利县| 永康市| 两当县| 新津县| 乐陵市| 葫芦岛市| 芦溪县| 罗源县| 延寿县| 宁武县| 临夏县| 七台河市| 安新县| 大新县| 金沙县| 萍乡市| 石柱| 山东省| 宜兴市| 潢川县| 车险| 郧西县| 胶州市| 灵川县| 沽源县| 泸水县| 章丘市| 荔浦县| 湄潭县| 台南市| 农安县| 峡江县| 天祝| 台安县| 茂名市| 竹溪县| 临朐县| 大埔县|