找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Driven Clinical Decision-Making Using Deep Learning in Imaging; M. F. Mridha,Nilanjan Dey Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: TUMOR
11#
發(fā)表于 2025-3-23 13:05:12 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:52 | 只看該作者
14#
發(fā)表于 2025-3-24 00:11:11 | 只看該作者
15#
發(fā)表于 2025-3-24 03:27:32 | 只看該作者
16#
發(fā)表于 2025-3-24 07:00:25 | 只看該作者
17#
發(fā)表于 2025-3-24 11:22:37 | 只看該作者
Eisen(II)-hydrocarbonat Fe(HCO3)2,the gradient problem, resulting in an optimized and efficient training process. Our proposed model outperformed all existing models including the SOTA model, with an accuracy of 89.95%, precision of 91.42%, recall of 88.84%, F1 of 89.68%, and specificity of 95.98%.
18#
發(fā)表于 2025-3-24 16:32:36 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:04 | 只看該作者
,Advancing Brain Tumour Detection: Transfer Learning-Based Approach Fused with?Squeeze-and-Excitatioenchmarked with the previous seven state-of-the-art (SOTA) models on the same dataset. Our proposed techniques obtained the best results for both the validation and testing datasets. On the validation data of the MRI brain tumour, we achieved the highest results, with an accuracy of 95.92%, precision of 95.89%, recall of 95.24% and AUC of 99.00%.
20#
發(fā)表于 2025-3-25 02:22:18 | 只看該作者
Enhancing Breast Cancer Detection Systems: Augmenting Mammogram Images Using Generative Adversarialbuted to the labor-intensive curation and labeling of images, coupled with privacy concerns, serves as a driving force behind investigating GANs as a potential solution. This exploration aims to address the challenge of obtaining a more extensive and diverse dataset, essential for the robust training of breast cancer detection systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永福县| 浦北县| 襄樊市| 平阳县| 临澧县| 德令哈市| 余干县| 敦化市| 灌阳县| 池州市| 桦甸市| 吴堡县| 颍上县| 会宁县| 威远县| 绍兴市| 历史| 资溪县| 汽车| 精河县| 驻马店市| 三门峡市| 德州市| 兰州市| 克山县| 乐至县| 六安市| 琼结县| 海门市| 新化县| 康乐县| 勃利县| 荆州市| 宜兰县| 涞水县| 襄汾县| 米脂县| 鹤山市| 滨州市| 汾西县| 望江县|