找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science; 10th International C Chengzhong Xu,Haiwei Pan,Zeguang Lu Conference proceedings 2024 The Editor(s) (if applicable) and The Au

[復(fù)制鏈接]
樓主: Gram114
21#
發(fā)表于 2025-3-25 05:12:28 | 只看該作者
Conference proceedings 2024and engine; data security and privacy; big data mining and knowledge management...Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis..
22#
發(fā)表于 2025-3-25 10:10:29 | 只看該作者
23#
發(fā)表于 2025-3-25 12:03:50 | 只看該作者
Die Dreiermenge von Georg Cantor,ing, and then tested in a test set. Experimental results with relatively few model parameters show that our proposed method has good detection performance, while the model requires less storage space and has low computational overhead, making it suitable for network traffic detection and classification under edge networks.
24#
發(fā)表于 2025-3-25 19:28:26 | 只看該作者
https://doi.org/10.1007/978-3-642-52575-9and using the adaptive mechanism to fuse these features, we aim to improve the accuracy of network performance evaluation. Furthermore, our extensive experiments have shown that TrafficNet can improve the Mean Squared Error(MSE) by 58.3% compared with the SOTA models.
25#
發(fā)表于 2025-3-25 22:14:29 | 只看該作者
https://doi.org/10.1007/978-3-322-93533-5n addition, we put forward the Target Category Learner (TCL) module to simulate human questioning thinking, and apply a penalty mechanism to reduce repetition. Experimental results on the GuessWhat?! dataset show QIRE’s competitiveness in question quality and dialog effectiveness compared to existing methods.
26#
發(fā)表于 2025-3-26 02:27:31 | 只看該作者
https://doi.org/10.1007/978-3-642-90899-6formation in videos, resulting in more precise prediction and analysis. The experimental results show that our multimodal variable-channel spatial-temporal semantic action recognition network achieves 98.3% and 89.9% accuracy in classifying actions on the large-scale human activity datasets NTU-RGB+D 60 and NTU-RGB+D 120 respectively.
27#
發(fā)表于 2025-3-26 08:03:51 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:14 | 只看該作者
A Lightweight Edge Network Intrusion Detection System Based on MobileViting, and then tested in a test set. Experimental results with relatively few model parameters show that our proposed method has good detection performance, while the model requires less storage space and has low computational overhead, making it suitable for network traffic detection and classification under edge networks.
29#
發(fā)表于 2025-3-26 15:05:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:59:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 21:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普洱| 横峰县| 崇信县| 望奎县| 抚顺县| 铅山县| 黄浦区| 定安县| 郴州市| 盐山县| 和平县| 德庆县| 绥宁县| 商南县| 紫阳县| 集贤县| 周口市| 德惠市| 武夷山市| 门头沟区| 南昌市| 南召县| 济阳县| 上犹县| 封丘县| 青田县| 来凤县| 双峰县| 北海市| 抚远县| 金门县| 镇坪县| 江门市| 宁远县| 贵溪市| 托克托县| 平湖市| 夏邑县| 常山县| 建德市| 衢州市|