找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering in Medical Imaging; Second MICCAI Worksh Binod Bhattarai,Sharib Ali,Danail Stoyanov Conference proceedings 2025 The Editor

[復(fù)制鏈接]
樓主: Polk
21#
發(fā)表于 2025-3-25 04:13:36 | 只看該作者
22#
發(fā)表于 2025-3-25 10:04:14 | 只看該作者
23#
發(fā)表于 2025-3-25 13:04:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:45 | 只看該作者
25#
發(fā)表于 2025-3-25 20:09:57 | 只看該作者
,Cross-Task Data Augmentation by?Pseudo-Label Generation for?Region Based Coronary Artery Instance Sudo-labels generated on a dataset of separate related task to diversify and improve model performance. This method increases the baseline F1 score by 9% in the validation data set and by 3% in the test data set.
26#
發(fā)表于 2025-3-26 01:29:27 | 只看該作者
,Real Time Multi Organ Classification on?Computed Tomography Images,tes as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
27#
發(fā)表于 2025-3-26 05:18:56 | 只看該作者
28#
發(fā)表于 2025-3-26 10:22:22 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:08 | 只看該作者
Mario Cardano,Marco Castagnettotes as an independent classifier at query locations, it can generate full segmentations by querying grid locations at any resolution, offering faster performance than segmentation algorithms. We compared our method with existing segmentation techniques, demonstrating its superior runtime potential for practical applications in medical imaging.
30#
發(fā)表于 2025-3-26 18:21:24 | 只看該作者
https://doi.org/10.1007/978-3-031-73748-0data augmentation; synthetic data; active learning; medical imaging; data synthesis; federated learning; m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成都市| 宁海县| 井陉县| 林周县| 香格里拉县| 华安县| 肥东县| 黄石市| 瑞安市| 买车| 利津县| 郯城县| 普兰店市| 平昌县| 漳浦县| 大理市| 四川省| 宁陵县| 三江| 镇雄县| 拜泉县| 雷州市| 新沂市| 安平县| 罗甸县| 南京市| 井陉县| 横峰县| 玛多县| 徐闻县| 洪洞县| 新田县| 平利县| 遵化市| 阳高县| 兴山县| 隆昌县| 剑河县| 绵阳市| 林芝县| 永登县|