找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Engineering for Machine Learning Pipelines; From Python Librarie Pavan Kumar Narayanan Book 2024 Pavan Kumar Narayanan 2024 Artificial

[復(fù)制鏈接]
查看: 55675|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:24:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Engineering for Machine Learning Pipelines
副標(biāo)題From Python Librarie
編輯Pavan Kumar Narayanan
視頻videohttp://file.papertrans.cn/285/284439/284439.mp4
概述Covers the A to Z of data engineering for ML pipelines, including data wrangling and cloud computing.Provides you with the latest technologies and methodologies, to move through the next decade of dat
圖書封面Titlebook: Data Engineering for Machine Learning Pipelines; From Python Librarie Pavan Kumar Narayanan Book 2024 Pavan Kumar Narayanan 2024 Artificial
描述.This book covers modern data engineering functions and important Python libraries, to help you develop state-of-the-art ML pipelines and integration code...The book begins by explaining data analytics and transformation, delving into the Pandas library, its capabilities, and nuances. It then explores emerging libraries such as Polars and CuDF, providing insights into GPU-based computing and cutting-edge data manipulation techniques. The text discusses the importance of data validation in engineering processes, introducing tools such as Great Expectations and Pandera to ensure data quality and reliability. The book delves into API design and development, with a specific focus on leveraging the power of FastAPI. It covers authentication, authorization, and real-world applications, enabling you to construct efficient and secure APIs using FastAPI. Also explored is concurrency in data engineering, examining Dask‘s capabilities from basic setup to crafting advanced machine learning pipelines. The book includes development and delivery of data engineering pipelines using leading cloud platforms such as AWS, Google Cloud, and Microsoft Azure. The concluding chapters concentrate on real-t
出版日期Book 2024
關(guān)鍵詞Artificial Intelligence; Machine Learning; Python; MLOps; Data Engineering; DevOps; Data Analytics; API Des
版次1
doihttps://doi.org/10.1007/979-8-8688-0602-5
isbn_softcover979-8-8688-0601-8
isbn_ebook979-8-8688-0602-5
copyrightPavan Kumar Narayanan 2024
The information of publication is updating

書目名稱Data Engineering for Machine Learning Pipelines影響因子(影響力)




書目名稱Data Engineering for Machine Learning Pipelines影響因子(影響力)學(xué)科排名




書目名稱Data Engineering for Machine Learning Pipelines網(wǎng)絡(luò)公開度




書目名稱Data Engineering for Machine Learning Pipelines網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Engineering for Machine Learning Pipelines被引頻次




書目名稱Data Engineering for Machine Learning Pipelines被引頻次學(xué)科排名




書目名稱Data Engineering for Machine Learning Pipelines年度引用




書目名稱Data Engineering for Machine Learning Pipelines年度引用學(xué)科排名




書目名稱Data Engineering for Machine Learning Pipelines讀者反饋




書目名稱Data Engineering for Machine Learning Pipelines讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:45:08 | 只看該作者
地板
發(fā)表于 2025-3-22 04:38:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:18:57 | 只看該作者
https://doi.org/10.1007/978-3-642-71161-9rules were defined within a limited scope. As SQL evolved within the relational systems, it provided more opportunities with respect to specifying better validation rules by writing SQL code. In the modern days of big data and machine learning, data validation has occupied greater relevance. The qua
6#
發(fā)表于 2025-3-22 15:14:36 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:03 | 只看該作者
Operations Research Proceedings single-thread processing can be seen as a limitation. Python, by default, has a global interpreter lock (GIL) that allows only one thread to hold the interpreter at a given point in time. While this design ensures the integrity of computations submitted, it would be much more effective to use many
8#
發(fā)表于 2025-3-22 21:54:34 | 只看該作者
Risikoaversion und optimale Konsumaufteilungta in order to make decisions. Organizations of all nature have gained significant value by leveraging machine learning models in their processes. Training a machine learning model is done using algorithms, which can be computationally expensive. As datasets grow larger, both in terms of volume and
9#
發(fā)表于 2025-3-23 02:15:51 | 只看該作者
Johannes M. Ruhland,Klaus D. Wildeincredibly rich in functionalities. We are going to discuss Apache Kafka. Apache Kafka is a distributed and fault-tolerant streaming and messaging platform. Kafka helps build event streaming pipelines that can capture creation of new data and modification of existing data in real time and route it a
10#
發(fā)表于 2025-3-23 05:42:40 | 只看該作者
Vergleich von Verschnittsoftwarel to deliver data services and deploy machine learning models for consumption. In this chapter, we will be discussing FastAPI. FastAPI is a Python library that primarily enables web application development and microservice development. We will look at FastAPI with the sole intention of using the lib
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达拉特旗| 古交市| 陆良县| 司法| 棋牌| 茶陵县| 古丈县| 达拉特旗| 准格尔旗| 外汇| 武宁县| 社旗县| 通化县| 孝感市| 赣州市| 郎溪县| 定安县| 萍乡市| 靖远县| 洪泽县| 阿拉尔市| 监利县| 临高县| 杂多县| 安吉县| 大足县| 浮山县| 临邑县| 通海县| 屯门区| 长春市| 嵊泗县| 江津市| 梁河县| 嘉兴市| 包头市| 申扎县| 襄汾县| 盐池县| 额敏县| 永善县|